Some recent progresses in renorming theory

Jacopo Somaglia

(Joint work with C. A. De Bernardi and A. Preti)

Politecnico di Milano, Dipartimento di Matematica

Lluís Santaló School: Linear and non-linear analysis in Banach spaces Santander, Spain, 17-21 July 2023 Let $(X, \|\cdot\|)$ be a Banach space.

æ

ъ

990

3 1 4

SQA

$$C_1\|x\|\leqslant |x|\leqslant C_2\|x\|,$$

holds for every $x \in X$.

$$C_1\|x\|\leqslant |x|\leqslant C_2\|x\|,$$

holds for every $x \in X$. Equivalently, if the following holds

$$C_1\|x\|\leqslant |x|\leqslant C_2\|x\|,$$

holds for every $x \in X$. Equivalently, if the following holds

$$C_1B_{(X,|\cdot|)} \subseteq B_{(X,||\cdot||)} \subseteq C_2B_{(X,|\cdot|)}$$

$$C_1\|x\|\leqslant |x|\leqslant C_2\|x\|,$$

holds for every $x \in X$. Equivalently, if the following holds

$$C_1B_{(X,|\cdot|)}\subseteq B_{(X,\|\cdot\|)}\subseteq C_2B_{(X,|\cdot|)}$$

 $(B_{(X,\|\cdot\|)} = \{x \in X \colon \|x\| \leq 1\}).$

$$C_1\|x\|\leqslant |x|\leqslant C_2\|x\|,$$

holds for every $x \in X$. Equivalently, if the following holds

$$C_1B_{(X,|\cdot|)} \subseteq B_{(X,\|\cdot\|)} \subseteq C_2B_{(X,|\cdot|)}$$

 $(B_{(X,\|\cdot\|)} = \{x \in X \colon \|x\| \leq 1\}).$

In these cases we say that $(X, |\cdot|)$ is a renorming of $(X, ||\cdot|)$.

Image: A image: A

990

э

• $(X, \|\cdot\|)$ and $(X, |\cdot|)$ have the same topology.

A B + A B +

э

SQA

- $(X, \|\cdot\|)$ and $(X, |\cdot|)$ have the same topology.
- (X, || · ||) and (X, | · |) have the same linear continuous functionals. Therefore the same weak topology.

4 E 5 4

- $(X, \|\cdot\|)$ and $(X, |\cdot|)$ have the same topology.
- (X, || · ||) and (X, | · |) have the same linear continuous functionals. Therefore the same weak topology.
- All the norms in \mathbb{R}^n are equivalent.

4 E 5 4

- $(X, \|\cdot\|)$ and $(X, |\cdot|)$ have the same topology.
- (X, || · ||) and (X, | · |) have the same linear continuous functionals. Therefore the same weak topology.
- All the norms in \mathbb{R}^n are equivalent.
- If (X, || · ||) is infinite-dimensional, then it admits a non-equivalent norm.

F A B F A

- $(X, \|\cdot\|)$ and $(X, |\cdot|)$ have the same topology.
- (X, || · ||) and (X, | · |) have the same linear continuous functionals. Therefore the same weak topology.
- All the norms in \mathbb{R}^n are equivalent.
- If (X, || · ||) is infinite-dimensional, then it admits a non-equivalent norm.

Goal:

- $(X, \|\cdot\|)$ and $(X, |\cdot|)$ have the same topology.
- (X, || · ||) and (X, | · |) have the same linear continuous functionals. Therefore the same weak topology.
- All the norms in \mathbb{R}^n are equivalent.
- If (X, || · ||) is infinite-dimensional, then it admits a non-equivalent norm.

Goal: Given an infinite-dimensional Banach space $(X, \|\cdot\|)$, to find a renorming $(X, |\cdot|)$ with nice rotund/smooth properties.

・ 同 ト ・ ヨ ト ・ ヨ ト

The norm $\|\cdot\|$ of a Banach space X is called locally uniformly rotund (LUR) if

DQC

$$\lim(2\|x\|^2 + 2\|x_n\|^2 - \|x + x_n\|^2) = 0$$

SQA

$$\lim(2\|x\|^2 + 2\|x_n\|^2 - \|x + x_n\|^2) = 0$$

we have $\lim ||x - x_n|| = 0$.

3.1

SQA

$$\lim(2\|x\|^2 + 2\|x_n\|^2 - \|x + x_n\|^2) = 0$$

we have $\lim ||x - x_n|| = 0$.

• $\|\cdot\|$ is LUR if and only if $\lim \|x - x_n\| = 0$ whenever $x_n, x \in S_X$ are such that $\lim \|x_n + x\| = 2$.

$$\lim(2\|x\|^2 + 2\|x_n\|^2 - \|x + x_n\|^2) = 0$$

we have $\lim ||x - x_n|| = 0$.

- $\|\cdot\|$ is LUR if and only if $\lim \|x x_n\| = 0$ whenever $x_n, x \in S_X$ are such that $\lim \|x_n + x\| = 2$.
- Every separable Banach space has an equivalent LUR norm [Kadec].

$$\lim(2\|x\|^2 + 2\|x_n\|^2 - \|x + x_n\|^2) = 0$$

we have $\lim ||x - x_n|| = 0$.

- $\|\cdot\|$ is LUR if and only if $\lim \|x x_n\| = 0$ whenever $x_n, x \in S_X$ are such that $\lim \|x_n + x\| = 2$.
- Every separable Banach space has an equivalent LUR norm [Kadec].
- ℓ_{∞} does not admit a LUR renorming[Lindenstrauss-Troyanski, 1971-1972].

医马马氏子属

ヨートー

If $(X, \|\cdot\|)$ is a Banach space with a w^* -separable dual, then X has an equivalent strictly convex norm.

If $(X, \|\cdot\|)$ is a Banach space with a w^* -separable dual, then X has an equivalent strictly convex norm.

Examples:

If $(X, \|\cdot\|)$ is a Banach space with a w^* -separable dual, then X has an equivalent strictly convex norm.

Examples:

• X separable space;

If $(X, \|\cdot\|)$ is a Banach space with a w^* -separable dual, then X has an equivalent strictly convex norm.

Examples:

- X separable space;
- ℓ_{∞} .

If $(X, \|\cdot\|)$ is a Banach space with a w^* -separable dual, then X has an equivalent strictly convex norm.

Examples:

- X separable space;
- ℓ_{∞} .

On the other hand if Γ is an uncountable set, then $\ell_{\infty}(\Gamma)$ does not admit a strictly convex renorming [Day,1955].

A norm $\|\cdot\|$ on a Banach space X is called Fréchet (respectively Gâteaux) differentiable if $\|\cdot\|$ is Fréchet (respectively Gâteaux) differentiable on the open set $X \setminus \{0\}$.

SQA

A norm $\|\cdot\|$ on a Banach space X is called Fréchet (respectively Gâteaux) differentiable if $\|\cdot\|$ is Fréchet (respectively Gâteaux) differentiable on the open set $X \setminus \{0\}$.

• If $\|\cdot\|^*$ is strictly convex (LUR, respectively), then $\|\cdot\|$ is Gâteaux (Fréchet, respectively) differentiable.

A norm $\|\cdot\|$ on a Banach space X is called Fréchet (respectively Gâteaux) differentiable if $\|\cdot\|$ is Fréchet (respectively Gâteaux) differentiable on the open set $X \setminus \{0\}$.

- If $\|\cdot\|^*$ is strictly convex (LUR, respectively), then $\|\cdot\|$ is Gâteaux (Fréchet, respectively) differentiable.
- If $\|\cdot\|^*$ is Gâteaux differentiable, then $\|\cdot\|$ is strictly convex.

A norm $\|\cdot\|$ on a Banach space X is called Fréchet (respectively Gâteaux) differentiable if $\|\cdot\|$ is Fréchet (respectively Gâteaux) differentiable on the open set $X \setminus \{0\}$.

- If $\|\cdot\|^*$ is strictly convex (LUR, respectively), then $\|\cdot\|$ is Gâteaux (Fréchet, respectively) differentiable.
- If $\|\cdot\|^*$ is Gâteaux differentiable, then $\|\cdot\|$ is strictly convex.
- Every reflexive space can be renormed by norm which is not LUR whose dual norm is Fréchet [Yost, 1981]

A norm $\|\cdot\|$ on a Banach space X is called Fréchet (respectively Gâteaux) differentiable if $\|\cdot\|$ is Fréchet (respectively Gâteaux) differentiable on the open set $X \setminus \{0\}$.

- If $\|\cdot\|^*$ is strictly convex (LUR, respectively), then $\|\cdot\|$ is Gâteaux (Fréchet, respectively) differentiable.
- If $\|\cdot\|^*$ is Gâteaux differentiable, then $\|\cdot\|$ is strictly convex.
- Every reflexive space can be renormed by norm which is not LUR whose dual norm is Fréchet [Yost, 1981]
- Every non-reflexive separable Banach space admits a Gâteaux differentiable equivalent norm such that its dual norm is not strictly convex [Klee, 1959].

A (1) < A (

A norm $\|\cdot\|$ on a Banach space X is called Fréchet (respectively Gâteaux) differentiable if $\|\cdot\|$ is Fréchet (respectively Gâteaux) differentiable on the open set $X \setminus \{0\}$.

- If $\|\cdot\|^*$ is strictly convex (LUR, respectively), then $\|\cdot\|$ is Gâteaux (Fréchet, respectively) differentiable.
- If $\|\cdot\|^*$ is Gâteaux differentiable, then $\|\cdot\|$ is strictly convex.
- Every reflexive space can be renormed by norm which is not LUR whose dual norm is Fréchet [Yost, 1981]
- Every non-reflexive separable Banach space admits a Gâteaux differentiable equivalent norm such that its dual norm is not strictly convex [Klee, 1959].
- Every separable Banach space has a LUR, Gâteaux renorming.

4 A F A F A A

A norm $\|\cdot\|$ on a Banach space X is called Fréchet (respectively Gâteaux) differentiable if $\|\cdot\|$ is Fréchet (respectively Gâteaux) differentiable on the open set $X \setminus \{0\}$.

- If $\|\cdot\|^*$ is strictly convex (LUR, respectively), then $\|\cdot\|$ is Gâteaux (Fréchet, respectively) differentiable.
- If $\|\cdot\|^*$ is Gâteaux differentiable, then $\|\cdot\|$ is strictly convex.
- Every reflexive space can be renormed by norm which is not LUR whose dual norm is Fréchet [Yost, 1981]
- Every non-reflexive separable Banach space admits a Gâteaux differentiable equivalent norm such that its dual norm is not strictly convex [Klee, 1959].
- Every separable Banach space has a LUR, Gâteaux renorming.
- Every separable Banach space with a separable dual has a LUR, Fréchet renorming.

・ロト ・同ト ・ヨト ・

< □ > < □ > < □ > < □ > < □ > < □ >

æ

990

Problem 52.1.1.5: Does every infinite-dimensional separable space admit a norm that is rotund and Gâteaux smooth but not LUR?

(日) (同) (三) (三)

SQA
A slice of K is a set of the form

 $S(K, x^*, \alpha) := \{x^* \in K; x^*(x) > \sup x^*(K) - \alpha\}.$

3 🖌 🖌 3

990

3

A slice of K is a set of the form

$$\mathcal{S}(\mathcal{K}, x^*, \alpha) := \{x^* \in \mathcal{K}; \ x^*(x) > \sup x^*(\mathcal{K}) - \alpha\}.$$

A point x is a denting point of B_X if for each neighbourhood V of x in the norm topology there exists a slice S of B_X such that $x \in S \subset V$.

A slice of K is a set of the form

$$S(\mathcal{K}, x^*, \alpha) := \{x^* \in \mathcal{K}; x^*(x) > \sup x^*(\mathcal{K}) - \alpha\}.$$

A point x is a denting point of B_X if for each neighbourhood V of x in the norm topology there exists a slice S of B_X such that $x \in S \subset V$.

A Banach space X is said average locally uniformly rotund (ALUR, in short) if every point of the unit sphere S_X is a denting point.

A slice of K is a set of the form

$$S(\mathcal{K}, x^*, \alpha) := \{x^* \in \mathcal{K}; x^*(x) > \sup x^*(\mathcal{K}) - \alpha\}.$$

A point x is a denting point of B_X if for each neighbourhood V of x in the norm topology there exists a slice S of B_X such that $x \in S \subset V$.

A Banach space X is said average locally uniformly rotund (ALUR, in short) if every point of the unit sphere S_X is a denting point.

A Banach space X has the Kadec property if the norm and the weak topology coincide on the unit sphere S_X .

A slice of K is a set of the form

$$S(\mathcal{K}, x^*, \alpha) := \{x^* \in \mathcal{K}; \ x^*(x) > \sup x^*(\mathcal{K}) - \alpha\}.$$

A point x is a denting point of B_X if for each neighbourhood V of x in the norm topology there exists a slice S of B_X such that $x \in S \subset V$.

A Banach space X is said average locally uniformly rotund (ALUR, in short) if every point of the unit sphere S_X is a denting point.

A Banach space X has the Kadec property if the norm and the weak topology coincide on the unit sphere S_X .

X is ALUR \Leftrightarrow X is strictly convex and has the Kadec property.

A slice of K is a set of the form

$$S(K, x^*, \alpha) := \{x^* \in K; x^*(x) > \sup x^*(K) - \alpha\}.$$

A point x is a denting point of B_X if for each neighbourhood V of x in the norm topology there exists a slice S of B_X such that $x \in S \subset V$.

A Banach space X is said average locally uniformly rotund (ALUR, in short) if every point of the unit sphere S_X is a denting point.

A Banach space X has the Kadec property if the norm and the weak topology coincide on the unit sphere S_X .

X is ALUR \Leftrightarrow X is strictly convex and has the Kadec property.

Theorem (De Bernardi, S.)

Every infinite-dimensional separable Banach space admits an average locally uniformly rotund (and hence rotund) Gâteaux smooth equivalent norm $|\cdot|$ which is not locally uniformly rotund.

naa

$$B:=\{(x_n)_n\in \ell_2\colon \sum_{n=1}^\infty \frac{n}{2}x_n^2\leqslant 1\}.$$

DQC

э

-

$$B:=\{(x_n)_n\in \ell_2\colon \sum_{n=1}^\infty \frac{n}{2}x_n^2\leqslant 1\}.$$

The set B is totally bounded and closed, hence it is compact.

DQC

$$B:=\{(x_n)_n\in\ell_2\colon\sum_{n=1}^\infty\frac{n}{2}x_n^2\leqslant 1\}.$$

The set B is totally bounded and closed, hence it is compact. Therefore the subset

$$D := \operatorname{conv}(B_{\ell_2} \cup B),$$

$$B:=\{(x_n)_n\in\ell_2\colon\sum_{n=1}^\infty\frac{n}{2}x_n^2\leqslant 1\}.$$

The set B is totally bounded and closed, hence it is compact. Therefore the subset

$$D := \operatorname{conv}(B_{\ell_2} \cup B),$$

is a closed, convex, symmetric subset of ℓ_2 with nonempty interior.

$$\mu_D(x) := \inf\{t > 0 \colon x \in tD\}.$$

DQC

$$\mu_D(x) := \inf\{t > 0 \colon x \in tD\}.$$

$$\mu_D(x) := \inf\{t > 0 \colon x \in tD\}.$$

The formula $\|\cdot\| := \mu_D(\cdot)$ defines an equivalent norm on $(\ell_2, \|\cdot\|_2)$ which satisfies

• $\|\cdot\|$ is Gâteaux differentiable;

$$\mu_D(x) := \inf\{t > 0 \colon x \in tD\}.$$

- $\|\cdot\|$ is Gâteaux differentiable;
- $\|\cdot\|$ has the Kadec property;

$$\mu_D(x) := \inf\{t > 0 \colon x \in tD\}.$$

- $\|\cdot\|$ is Gâteaux differentiable;
- $\|\cdot\|$ has the Kadec property;
- $\|\cdot\|$ is not LUR at $x = e_1$;

$$\mu_D(x) := \inf\{t > 0 \colon x \in tD\}.$$

- $\|\cdot\|$ is Gâteaux differentiable;
- $\|\cdot\|$ has the Kadec property;
- $\|\cdot\|$ is not LUR at $x = e_1$;
- $\|\cdot\|$ is not strictly convex.

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

→ ★ 문 ► ★ 문

< 一型

æ

990

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

The norm $|\cdot|$ is equivalent to $\|\cdot\|_2$ which satisfies

DQC

æ

3 🕨 🖌 3

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

The norm $|\cdot|$ is equivalent to $\|\cdot\|_2$ which satisfies

• $|\cdot|$ is Gâteaux differentiable;

∃ ▶ ∢

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

The norm $|\cdot|$ is equivalent to $\|\cdot\|_2$ which satisfies

- $|\cdot|$ is Gâteaux differentiable;
- $|\cdot|$ has the Kadec property;

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

The norm $|\cdot|$ is equivalent to $\|\cdot\|_2$ which satisfies

- $|\cdot|$ is Gâteaux differentiable;
- $|\cdot|$ has the Kadec property;
- $|\cdot|$ is not LUR at $x = e_1$;

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

The norm $|\cdot|$ is equivalent to $\|\cdot\|_2$ which satisfies

- $|\cdot|$ is Gâteaux differentiable;
- $|\cdot|$ has the Kadec property;
- $|\cdot|$ is not LUR at $x = e_1$;
- $\bullet |\cdot|$ is strictly convex.

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

The norm $|\cdot|$ is equivalent to $\|\cdot\|_2$ which satisfies

- $|\cdot|$ is Gâteaux differentiable;
- $|\cdot|$ has the Kadec property;
- $|\cdot|$ is not LUR at $x = e_1$;
- $|\cdot|$ is strictly convex.

Therefore the theorem is true in Hilbert spaces...

$$|x|^2 := ||x||^2 + \sum_{n=2}^{\infty} \frac{x_n^2}{2^n}$$

The norm $|\cdot|$ is equivalent to $\|\cdot\|_2$ which satisfies

- | · | is Gâteaux differentiable;
- $|\cdot|$ has the Kadec property;
- $|\cdot|$ is not LUR at $x = e_1$;
- $|\cdot|$ is strictly convex.

Therefore the theorem is true in Hilbert spaces...

What about the general case?

Let X be a separable Banach space.

990

æ

Let X be a separable Banach space. Then there exist an equivalent norm $\|\cdot\|$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

Let X be a separable Banach space. Then there exist an equivalent norm $||| \cdot |||$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

I is LUR and Gâteaux smooth;

Let X be a separable Banach space. Then there exist an equivalent norm $||| \cdot |||$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

- I is LUR and Gâteaux smooth;
- we have

$$|||x|||^2 = |||x - g_1(x)e_1|||^2 + [g_1(x)]^2;$$

Let X be a separable Banach space. Then there exist an equivalent norm $||| \cdot |||$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

Is LUR and Gâteaux smooth;

2 we have

$$|||x|||^2 = |||x - g_1(x)e_1|||^2 + [g_1(x)]^2;$$

$$\ \ \|e_n\|=1, \ \ \text{whenever} \ n\in\mathbb{N};$$

Let X be a separable Banach space. Then there exist an equivalent norm $||| \cdot |||$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

I is LUR and Gâteaux smooth;

2 we have

$$|||x|||^2 = |||x - g_1(x)e_1|||^2 + [g_1(x)]^2;$$

3
$$|||e_n||| = 1$$
, whenever $n \in \mathbb{N}$;
3 $|||g_1|||^* = ||g_{3n}|||^* = 1$, whenever $n \in \mathbb{N}$.

Let X be a separable Banach space. Then there exist an equivalent norm $||| \cdot |||$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

I is LUR and Gâteaux smooth;

2 we have

$$|||x|||^2 = |||x - g_1(x)e_1|||^2 + [g_1(x)]^2;$$

Let X be a separable Banach space. Then there exist an equivalent norm $||| \cdot |||$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

I is LUR and Gâteaux smooth;

2 we have

$$|||x|||^2 = |||x - g_1(x)e_1|||^2 + [g_1(x)]^2;$$

3
$$|\!|\!| e_n |\!|\!| = 1$$
, whenever $n \in \mathbb{N}$;
4 $|\!|\!| g_1 |\!|\!|^* = |\!|\!| g_{3n} |\!|\!|^* = 1$, whenever $n \in \mathbb{N}$.
We define the linear operator $T: (\ell_2, |\!| \cdot |\!|_2) \to (X, |\!|\!| \cdot |\!|\!|)$ by

$$T\alpha = \sqrt{2}\alpha_1 e_1 + \sum_{n=2}^{\infty} \frac{1}{n^2} \alpha_n e_n,$$

.⊒ ▶ ∢

Let X be a separable Banach space. Then there exist an equivalent norm $||| \cdot |||$ and an M-basis $(e_n, g_n)_{n \in \mathbb{N}}$ on X such that:

I is LUR and Gâteaux smooth;

2 we have

$$|||x|||^2 = |||x - g_1(x)e_1|||^2 + [g_1(x)]^2;$$

$$\begin{array}{l} \textcircled{\begin{subarray}{l} \bullet \end{subarray}} & \fbox{\begin{subarray}{l} \bullet \end{subarray}} \\ \textcircled{\begin{subarray}{l} \bullet \end{subarray}} & \fbox{\begin{subarray}{l} \bullet \end{subarray}} \\ & \red{subarray} \\ & \red{subarray}$$

$$T\alpha = \sqrt{2}\alpha_1 e_1 + \sum_{n=2}^{\infty} \frac{1}{n^2} \alpha_n e_n,$$

$$D := \operatorname{conv}(T[B_{\ell_2}] \cup B_{(X, \|\cdot\|)}) \quad |x|^2 = \|x\|^2 + \sum_{n=2}^{\infty} 2^{-n} f_n(x)^2.$$

Where $f_n = g_n / |||g_n|||^* \ (n \in \mathbb{N}).$

A B M A B M

Rotund not MLUR

Problem 52.3.3 [GMZ]: Can every infinite-dimensional separable Banach space be renormed to be Rotund and not MLUR?

Rotund not MLUR

Problem 52.3.3 [GMZ]: Can every infinite-dimensional separable Banach space be renormed to be Rotund and not MLUR?

Problem 52.3.6 [GMZ]: Can every infinite-dimensional Banach space with separable dual be renormed to be WUR and not MLUR?

Rotund not MLUR

Problem 52.3.3 [GMZ]: Can every infinite-dimensional separable Banach space be renormed to be Rotund and not MLUR?

Problem 52.3.6 [GMZ]: Can every infinite-dimensional Banach space with separable dual be renormed to be WUR and not MLUR?

Definition

A norm $\|\cdot\|$ is called midpoint locally uniformly rotund (MLUR) if whenever $x \in S_X$ and $x_n \in X$ are such that $\|x + x_n\| \to 1$ and $\|x - x_n\| \to 1$, then $x_n \to 0$.
Rotund not MLUR

Problem 52.3.3 [GMZ]: Can every infinite-dimensional separable Banach space be renormed to be Rotund and not MLUR?

Problem 52.3.6 [GMZ]: Can every infinite-dimensional Banach space with separable dual be renormed to be WUR and not MLUR?

Definition

A norm $\|\cdot\|$ is called midpoint locally uniformly rotund (MLUR) if whenever $x \in S_X$ and $x_n \in X$ are such that $\|x + x_n\| \to 1$ and $\|x - x_n\| \to 1$, then $x_n \to 0$.

Definition

A norm $\|\cdot\|$ is called weakly uniformly rotund (WUR) if whenever $x_n - y_n \to 0$ in the weak topology of X whenever $x_n, y_n \in S_X$ are such that $||x_n + y_n|| \to 2$.

Rotund not MLUR

Problem 52.3.3 [GMZ]: Can every infinite-dimensional separable Banach space be renormed to be Rotund and not MLUR?

Problem 52.3.6 [GMZ]: Can every infinite-dimensional Banach space with separable dual be renormed to be WUR and not MLUR?

Definition

A norm $\|\cdot\|$ is called midpoint locally uniformly rotund (MLUR) if whenever $x \in S_X$ and $x_n \in X$ are such that $\|x + x_n\| \to 1$ and $\|x - x_n\| \to 1$, then $x_n \to 0$.

Definition

A norm $\|\cdot\|$ is called weakly uniformly rotund (WUR) if whenever $x_n - y_n \to 0$ in the weak topology of X whenever $x_n, y_n \in S_X$ are such that $||x_n + y_n|| \to 2$.

Both questions have positive answer (Draga, 2015),

Theorem (De Bernardi, Preti, S.)

Every infinite-dimensional separable Banach space admits an equivalent norm which is Rotund, Gâteaux smooth and not MLUR.

Theorem (De Bernardi, Preti, S.)

Every infinite-dimensional separable Banach space admits an equivalent norm which is Rotund, Gâteaux smooth and not MLUR.

Theorem (De Bernardi, Preti, S.)

Every infinite-dimensional Banach space with separable dual admits an equivalent norm which is WUR Fréchet smooth and not MLUR.

Problem	Answer	Paper
52.1.1.5	Y	[DS]
52.1.2.1	Y	[Q]
52.1.2.4	Y	[Q]
52.1.3.3	Y	[Q]
52.1.4.2	Y	[Q]
52.1.4.6	Y	[HQ]
52.3.1	Y	[HQ]
52.3.3	Y	[D]
52.3.4	Y	[HQ]
52.3.6	Y	[D]
52.3.7	Y	[HQ]

æ

500

- C.A. De Bernardi, J. Somaglia, *Rotund Gâteaux smooth norms* which are not locally uniformly rotund, arxiv:2303.01833
- S. Draga, On weakly locally uniformly rotund norms which are not locally uniformly rotund, Coll. Math. 138 (2015) 241–246
- P. Hájek, A. Quilis, *Counterexamples in rotundity of norms in Banach spaces*, arXiv:2302.11041
- A. Quilis, Renormings preserving local geometry at countably many points in spheres of Banach spaces and applications, J. Math. Anal. Appl. 526 (2023) 127276

Thank you for your attention!

æ

990