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Renorming

Let (X , ‖ · ‖) be a Banach space.

A norm | · | : X → R+ is said to
be equivalent to ‖ · ‖ if there are two positive real numbers C1 6 C2
such that

C1‖x‖ 6 |x | 6 C2‖x‖,

holds for every x ∈ X .
Equivalently, if the following holds

C1B(X ,|·|) ⊆ B(X ,‖·‖) ⊆ C2B(X ,|·|)

(B(X ,‖·‖) = {x ∈ X : ‖x‖ 6 1}).

In these cases we say that (X , | · |) is a renorming of (X , ‖ · ‖).
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Basic properties

Let (X , ‖ · ‖) be a Banach space and (X , | · |) be a renorming of
(X , ‖ · ‖).

(X , ‖ · ‖) and (X , | · |) have the same topology.
(X , ‖ · ‖) and (X , | · |) have the same linear continuous
functionals. Therefore the same weak topology.
All the norms in Rn are equivalent.
If (X , ‖ · ‖) is infinite-dimensional, then it admits a
non-equivalent norm.

Goal: Given an infinite-dimensional Banach space (X , ‖ · ‖), to
find a renorming (X , | · |) with nice rotund/smooth properties.
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Locally uniformly rotund norms

The norm ‖ · ‖ of a Banach space X is called locally uniformly
rotund (LUR) if

for all x , xn ∈ X satisfying

lim(2‖x‖2 + 2‖xn‖2 − ‖x + xn‖2) = 0

we have lim ‖x − xn‖ = 0.
‖ · ‖ is LUR if and only if lim ‖x − xn‖ = 0 whenever
xn, x ∈ SX are such that lim ‖xn + x‖ = 2.
Every separable Banach space has an equivalent LUR norm
[Kadec].
`∞ does not admit a LUR renorming[Lindenstrauss-Troyanski,
1971-1972].
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Rotund norms

The norm ‖ · ‖ is said to be strictly convex (or rotund), if its unit
sphere contains no nondegenerate straight line segments.

If (X , ‖ · ‖) is a Banach space with a w∗-separable dual, then X has
an equivalent strictly convex norm.

Examples:
X separable space;
`∞.

On the other hand if Γ is an uncountable set, then `∞(Γ) does not
admit a strictly convex renorming [Day,1955].
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Smoothness vs Rotundity

A norm ‖ · ‖ on a Banach space X is called Fréchet (respectively
Gâteaux) differentiable if ‖ · ‖ is Fréchet (respectively Gâteaux)
differentiable on the open set X \ {0}.

If ‖ · ‖∗ is strictly convex (LUR, respectively), then ‖ · ‖ is
Gâteaux (Fréchet, respectively) differentiable.
If ‖ · ‖∗ is Gâteaux differentiable, then ‖ · ‖ is strictly convex.
Every reflexive space can be renormed by norm which is not
LUR whose dual norm is Fréchet [Yost, 1981]
Every non-reflexive separable Banach space admits a Gâteaux
differentiable equivalent norm such that its dual norm is not
strictly convex [Klee, 1959].
Every separable Banach space has a LUR, Gâteaux renorming.
Every separable Banach space with a separable dual has a
LUR, Fréchet renorming.
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Problem

Problem 52.1.1.5: Does every infinite-dimensional separable space
admit a norm that is rotund and Gâteaux smooth but not LUR?
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Main result

A slice of K is a set of the form

S(K , x∗, α) := {x∗ ∈ K ; x∗(x) > sup x∗(K )− α}.

A point x is a denting point of BX if for each neighbourhood V of
x in the norm topology there exists a slice S of BX such that
x ∈ S ⊂ V .

A Banach space X is said average locally uniformly rotund (ALUR,
in short) if every point of the unit sphere SX is a denting point.

A Banach space X has the Kadec property if the norm and the
weak topology coincide on the unit sphere SX .

X is ALUR ⇔ X is strictly convex and has the Kadec property.

Theorem (De Bernardi, S.)

Every infinite-dimensional separable Banach space admits an
average locally uniformly rotund (and hence rotund) Gâteaux
smooth equivalent norm | · | which is not locally uniformly rotund.
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Construction in `2

In (`2, ‖ · ‖2) we define the ellipsoid

B := {(xn)n ∈ `2 :
∑∞

n=1
n
2x

2
n 6 1}.

The set B is totally bounded and closed, hence it is
compact.Therefore the subset

D := conv(B`2 ∪ B),

is a closed, convex, symmetric subset of `2 with nonempty interior.
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Minkowski functional and the norm ‖ · ‖

The Minkowski functional of the set D

µD(x) := inf{t > 0 : x ∈ tD}.

The formula ‖ · ‖ := µD(·) defines an equivalent norm on
(`2, ‖ · ‖2) which satisfies

‖ · ‖ is Gâteaux differentiable;
‖ · ‖ has the Kadec property;
‖ · ‖ is not LUR at x = e1;
‖ · ‖ is not strictly convex.
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The norm | · |

We define

|x |2 := ‖x‖2 +
∞∑
n=2

x2
n

2n

The norm | · | is equivalent to ‖ · ‖2 which satisfies
| · | is Gâteaux differentiable;
| · | has the Kadec property;
| · | is not LUR at x = e1;
| · | is strictly convex.

Therefore the theorem is true in Hilbert spaces...

What about the general case?
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General setting

Let X be a separable Banach space.

Then there exist an equivalent
norm ||| · ||| and an M-basis (en, gn)n∈N on X such that:

1 ||| · ||| is LUR and Gâteaux smooth;
2 we have

|||x |||2 = |||x − g1(x)e1|||2 + [g1(x)]2;

3 |||en||| = 1, whenever n ∈ N;
4 |||g1|||∗ = |||g3n|||∗ = 1, whenever n ∈ N.

We define the linear operator T : (`2, ‖ · ‖2)→ (X , ||| · |||) by

Tα =
√
2α1e1 +

∞∑
n=2

1
n2αnen,

D := conv(T [B`2 ] ∪ B(X ,|||·|||)) |x |2 = ‖x‖2 +
∞∑
n=2

2−nfn(x)2.

Where fn = gn/|||gn|||∗ (n ∈ N).
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Rotund not MLUR

Problem 52.3.3 [GMZ]: Can every infinite-dimensional separable
Banach space be renormed to be Rotund and not MLUR?

Problem 52.3.6 [GMZ]: Can every infinite-dimensional Banach
space with separable dual be renormed to be WUR and not MLUR?

Definition
A norm ‖ · ‖ is called midpoint locally uniformly rotund (MLUR) if
whenever x ∈ SX and xn ∈ X are such that ‖x + xn‖ → 1 and
‖x − xn‖ → 1, then xn → 0.

Definition
A norm ‖ · ‖ is called weakly uniformly rotund (WUR) if whenever
xn − yn → 0 in the weak topology of X whenever xn, yn ∈ SX are
such that ‖xn + yn‖ → 2.

Both questions have positive answer (Draga, 2015).
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A smooth generalization

Theorem (De Bernardi, Preti, S.)

Every infinite-dimensional separable Banach space admits an
equivalent norm which is Rotund, Gâteaux smooth and not MLUR.

Theorem (De Bernardi, Preti, S.)

Every infinite-dimensional Banach space with separable dual admits
an equivalent norm which is WUR Fréchet smooth and not MLUR.
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Solved problems

Problem Answer Paper
52.1.1.5 Y [DS]
52.1.2.1 Y [Q]
52.1.2.4 Y [Q]
52.1.3.3 Y [Q]
52.1.4.2 Y [Q]
52.1.4.6 Y [HQ]
52.3.1 Y [HQ]
52.3.3 Y [D]
52.3.4 Y [HQ]
52.3.6 Y [D]
52.3.7 Y [HQ]
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Thank you for your attention!
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