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First Motivation

Long tradition of intensive studies on the existence of surjective
operators

(C (X ), τ) −→ (C (Y ), σ),

where X ,Y are Tychonoff spaces (usually compact, sometimes
metric) and τ, σ are linear topologies (usually: sup norm topology,
weak topology, compact-open topology, pointwise topology).

Many people involved: Arhangel’skii, Gul’ko, Krupski, Leiderman,
Marciszewski, van Mill, Okunev, Pestov, Pol, Uspenskii, Tkachuk...

What about spaces Lip0(M)?

Let M and N be metric spaces. What can we say about the
existence of surjective operators

(E , τ) −→ (F , σ),

where E ∈ {C (M), Lip0(M)} and F ∈ {C (N), Lip0(N)}?
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The situation is pesimistic...

Obvious observation

For a metric space M, the identity operators Lip0(M)→ Lip0(M)w
and Lip0(M)w → Lip0(M)p are continuous linear surjections.

Theorem, 1st part

Let M and N be infinite metric spaces. Then, there is no
continuous surjection T : X → Y for the following pairs of spaces
X and Y :
1 X = Lip0(M)p and Y = Lip0(N)w ,
2 X = Lip0(M)p and Y = Lip0(N),
3 X = Lip0(M)p and Y = Cp(N).
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Lip0(M) contains `∞

Theorem (Hájek–Novotný)

For every metric space M, the space F(M) contains a
complemented copy of `1(d(M)).

Consequently, Lip0(M) contains
a complemented copy of `∞(d(M)).

Consequences

Let M and N be infinite metric spaces.
1 d(Lip0(M)) = 2d(M)

2 d(M) = d(N) implies
d(Lip0(M)) = 2d(M) = 2d(N) = d(Lip0(N)), so by
Toruńczyk’s theorem Lip0(M) and Lip0(N) are
homeomorphic. (The converse may not hold.)

Theorem

For every metric space M, we have:
d(Lip(M)p) = d(Cp(M)) ¬ d(M).
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Second Motivation

Theorem (Rosenthal, Lacey)

For every infinite compact space K , the space C (K ) admits a
(continuous linear) operator onto c0 or `2.

Theorem

`∞ ∼= C (βN) does not admit any operators onto c0. Consequently,
there is an operator from `∞ onto `2.

Corollary

For every infinite metric space M, the space Lip0(M) admits an
operator onto `2.

Question

What about operators from Lip0(M) onto c0?
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The case of C (K )-spaces

Theorem (Räbiger, Schachermayer, Cembranos, Diestel,...)

For a compact space K , TFAE:
1 C (K ) admits an operator onto c0,

2 C (K ) contains a complemented copy of c0,
3 there is a non-weakly compact operator C (K )→ c0,
4 C (K ) is not a Grothendieck space (there is a weak*

convergent sequence in C (K )∗ which is not weakly
convergent).

Theorem

Let X be a Banach space. If the dual X ∗ contains a copy of c0,
then this copy is not complemented. Consequently, there is no
complemented copy of c0 in Lip0(M) for any metric space M.
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Lip0(c0) and Lip0(`1)

Theorem (Lindenstrauss)

For every Banach space X , the space Lip0(X ) contains a
complemented copy of the dual space X ∗.

Corollary

Lip0(c0) contains a complemented copy of `1, so it admits an
operator onto c0.

Theorem (Dalet)

Lip0(`1) contains a complemented copy of `1.
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Lipschitz retracts

Proposition

Let M ⊆ N. If M is a Lipschitz retract of N, then Lip0(M) is
isomorphic to a complemented subspace of Lip0(N).

In particular,
if Lip0(M) admits an operator onto c0, then so does Lip0(N).

Corollary

If a Banach space X contains a complemented copy of `1, then
Lip0(X ) contains a complemented copy of `1.

Theorem

c0 is an absolute Lipschitz retract, i.e. for every metric spaces X
and Y , if c0 ⊆ X and ϕ : c0 → Y is Lipschitz, then ϕ extends to a
Lipschitz mapping Φ: X → Y .

Corollary

If a Banach space X contains an isomorphic copy of c0, then
Lip0(X ) admits an operator onto c0.
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Consequences

Corollary

Let X be an infinite-dimensional Banach space. Then, Lip0(X )
admits an operator onto c0, provided that any of the following
hold:
1 X = C (K ) for some infinite compact K ,

Candido–Guzmán (2022): Lip0(C (K )) ' Lip0(c0(w(K ))),
2 X is a C*-algebra, or X is the n-th dual of a C*-algebra,
3 X is the predual of a C*-algebra,
4 X = B(H) for some Hilbert space,
5 X = L(Y ,Z ) for a normed space Y and a Banach space Z

which contains c0,
6 X = Bil(Y ×W ,Z ) for some Banach spaces Y ,W ,Z such

that Z contains c0 (recall: Bil(Y ×W ,Z ) ∼= L(Y ⊗̂πW ,Z )),
7 X = Lip0(M) for some metric space M,
8 X = F(M) for some metric space M.
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7 X = Lip0(M) for some metric space M,

8 X = F(M) for some metric space M.
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“Guilty” structures

Theorem

If a metric space M contains a bilipschitz copy of the unit sphere
Sc0 of c0, then Lip0(M) admits an operator onto c0.

Theorem (Raynaud)

`1 does not contain any bilipschitz (or even uniform) copies of Sc0 .

Another example

M =
⊔

n∈N `
n
∞

Lip0(M) '
(⊕∞

n=0 Lip0(`
n
∞)
)
∞
' Lip0(c0)

Question

Does Lip0([0, 1]2) admit an operator onto c0?

Recall: Lip0([0, 1]) ' `∞.
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Lip0(`2)

Question

Does there exist a Banach space X of dimension ­ 2 such that
Lip0(X ) does not admit any operator onto c0?

Question

Does there exist an operator from Lip0(`2) onto c0?

Question

Do there exist infinite-dimensional Banach spaces X and Y of the
same density such that Lip0(X ) and Lip0(Y ) are not isomorphic?

If not, then:

For every infinite-dimensional Banach space X of density κ ­ ℵ0,
Lip0(X ) contains a complemented copy of the dual space Y ∗ of
every Banach space Y of density ¬ κ.

Johnson (1971): There exists a separable Banach space E such
that E ∗ contains a complemented copy of F ∗ for every separable F .
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The end

Thank you for your attention!


