Continuous operators from spaces of Lipschitz functions

Damian Sobota

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Joint work in progress with C. Bargetz and J. Kąkol.

First Motivation

Long tradition of intensive studies on the existence of surjective operators

$$(C(X), \tau) \longrightarrow (C(Y), \sigma),$$

where X, Y are Tychonoff spaces (usually compact, sometimes metric) and τ, σ are linear topologies (usually: sup norm topology, weak topology, compact-open topology, pointwise topology).

First Motivation

Long tradition of intensive studies on the existence of surjective operators

$$(C(X), \tau) \longrightarrow (C(Y), \sigma),$$

where X, Y are Tychonoff spaces (usually compact, sometimes metric) and τ, σ are linear topologies (usually: sup norm topology, weak topology, compact-open topology, pointwise topology).

Many people involved: Arhangel'skii, Gul'ko, Krupski, Leiderman, Marciszewski, van Mill, Okunev, Pestov, Pol, Uspenskii, Tkachuk... Long tradition of intensive studies on the existence of surjective operators

$$(C(X), \tau) \longrightarrow (C(Y), \sigma),$$

where X, Y are Tychonoff spaces (usually compact, sometimes metric) and τ, σ are linear topologies (usually: sup norm topology, weak topology, compact-open topology, pointwise topology).

Many people involved: Arhangel'skii, Gul'ko, Krupski, Leiderman, Marciszewski, van Mill, Okunev, Pestov, Pol, Uspenskii, Tkachuk...

What about spaces $Lip_0(M)$?

Let M and N be metric spaces. What can we say about the existence of surjective operators

$$(E, \tau) \longrightarrow (F, \sigma),$$

where $E \in \{C(M), Lip_0(M)\}$ and $F \in \{C(N), Lip_0(N)\}$?

For a metric space M, the identity operators $\operatorname{Lip}_0(M) \to \operatorname{Lip}_0(M)_w$ and $\operatorname{Lip}_0(M)_w \to \operatorname{Lip}_0(M)_p$ are continuous linear surjections.

For a metric space M, the identity operators $\operatorname{Lip}_0(M) \to \operatorname{Lip}_0(M)_w$ and $\operatorname{Lip}_0(M)_w \to \operatorname{Lip}_0(M)_p$ are continuous linear surjections.

Theorem, 1st part

$$X = \operatorname{Lip}_0(M)_p \text{ and } Y = \operatorname{Lip}_0(N)_w,$$

For a metric space M, the identity operators $\operatorname{Lip}_0(M) \to \operatorname{Lip}_0(M)_w$ and $\operatorname{Lip}_0(M)_w \to \operatorname{Lip}_0(M)_p$ are continuous linear surjections.

Theorem, 1st part

- $X = \operatorname{Lip}_0(M)_p$ and $Y = \operatorname{Lip}_0(N)_w$,
- 2 $X = \text{Lip}_0(M)_p$ and $Y = \text{Lip}_0(N)$,

For a metric space M, the identity operators $\operatorname{Lip}_0(M) \to \operatorname{Lip}_0(M)_w$ and $\operatorname{Lip}_0(M)_w \to \operatorname{Lip}_0(M)_p$ are continuous linear surjections.

Theorem, 1st part

$$X = \operatorname{Lip}_0(M)_p \text{ and } Y = \operatorname{Lip}_0(N)_w,$$

3
$$X = \operatorname{Lip}_0(M)_p$$
 and $Y = \operatorname{Lip}_0(N)$,

3
$$X = \operatorname{Lip}_0(M)_p$$
 and $Y = C_p(N)$.

Theorem (Hájek–Novotný)

For every metric space M, the space $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$.

Theorem (Hájek–Novotný)

For every metric space M, the space $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$. Consequently, $\operatorname{Lip}_0(M)$ contains a complemented copy of $\ell_{\infty}(d(M))$.

Theorem (Hájek–Novotný)

For every metric space M, the space $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$. Consequently, $\operatorname{Lip}_0(M)$ contains a complemented copy of $\ell_{\infty}(d(M))$.

Consequences

Let M and N be infinite metric spaces.

•
$$d(Lip_0(M)) = 2^{d(M)}$$

Theorem (Hájek–Novotný)

For every metric space M, the space $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$. Consequently, $\operatorname{Lip}_0(M)$ contains a complemented copy of $\ell_{\infty}(d(M))$.

Consequences

Let M and N be infinite metric spaces.

•
$$d(Lip_0(M)) = 2^{d(M)}$$

2
$$d(M) = d(N)$$
 implies
 $d(\text{Lip}_0(M)) = 2^{d(M)} = 2^{d(N)} = d(\text{Lip}_0(N))$, so by
Toruńczyk's theorem $\text{Lip}_0(M)$ and $\text{Lip}_0(N)$ are
homeomorphic.

Theorem (Hájek–Novotný)

For every metric space M, the space $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$. Consequently, $\operatorname{Lip}_0(M)$ contains a complemented copy of $\ell_{\infty}(d(M))$.

Consequences

Let M and N be infinite metric spaces.

•
$$d(Lip_0(M)) = 2^{d(M)}$$

Theorem (Hájek–Novotný)

For every metric space M, the space $\mathcal{F}(M)$ contains a complemented copy of $\ell_1(d(M))$. Consequently, $\operatorname{Lip}_0(M)$ contains a complemented copy of $\ell_{\infty}(d(M))$.

Consequences

Let M and N be infinite metric spaces.

•
$$d(Lip_0(M)) = 2^{d(M)}$$

2
$$d(M) = d(N)$$
 implies
 $d(\text{Lip}_0(M)) = 2^{d(M)} = 2^{d(N)} = d(\text{Lip}_0(N))$, so by
Toruńczyk's theorem $\text{Lip}_0(M)$ and $\text{Lip}_0(N)$ are
homeomorphic. (The converse may not hold.)

Theorem

For every metric space M, we have: $d(\text{Lip}(M)_p) = d(C_p(M)) \leq d(M).$

Theorem, 2nd part

•
$$X = C_p(M)$$
 and $Y = \text{Lip}_0(N)_w$,

Theorem, 2nd part

•
$$X = C_p(M)$$
 and $Y = \text{Lip}_0(N)_w$,

2
$$X = C_p(M)$$
 and $Y = \operatorname{Lip}_0(N)$.

For every infinite compact space K, the space C(K) admits a (continuous linear) operator onto c_0 or ℓ_2 .

For every infinite compact space K, the space C(K) admits a (continuous linear) operator onto c_0 or ℓ_2 .

Theorem

 $\ell_{\infty} \cong C(\beta \mathbb{N})$ does not admit any operators onto c_0 . Consequently, there is an operator from ℓ_{∞} onto ℓ_2 .

For every infinite compact space K, the space C(K) admits a (continuous linear) operator onto c_0 or ℓ_2 .

Theorem

 $\ell_{\infty} \cong C(\beta \mathbb{N})$ does not admit any operators onto c_0 . Consequently, there is an operator from ℓ_{∞} onto ℓ_2 .

Corollary

For every infinite metric space M, the space $Lip_0(M)$ admits an operator onto ℓ_2 .

For every infinite compact space K, the space C(K) admits a (continuous linear) operator onto c_0 or ℓ_2 .

Theorem

 $\ell_{\infty} \cong C(\beta \mathbb{N})$ does not admit any operators onto c_0 . Consequently, there is an operator from ℓ_{∞} onto ℓ_2 .

Corollary

For every infinite metric space M, the space $Lip_0(M)$ admits an operator onto ℓ_2 .

Question

What about operators from $Lip_0(M)$ onto c_0 ?

For a compact space K, TFAE:

• C(K) admits an operator onto c_0 ,

For a compact space K, TFAE:

- C(K) admits an operator onto c_0 ,
- 2 C(K) contains a complemented copy of c_0 ,

For a compact space K, TFAE:

- C(K) admits an operator onto c_0 ,
- 2 C(K) contains a complemented copy of c_0 ,
- **③** there is a non-weakly compact operator $C(K) \rightarrow c_0$,

For a compact space K, TFAE:

- C(K) admits an operator onto c_0 ,
- \bigcirc C(K) contains a complemented copy of c_0 ,
- **③** there is a non-weakly compact operator $C(K) \rightarrow c_0$,
- C(K) is not a Grothendieck space (there is a weak* convergent sequence in C(K)* which is not weakly convergent).

For a compact space K, TFAE:

- C(K) admits an operator onto c_0 ,
- \bigcirc C(K) contains a complemented copy of c_0 ,
- **③** there is a non-weakly compact operator $C(K) \rightarrow c_0$,
- C(K) is not a Grothendieck space (there is a weak* convergent sequence in C(K)* which is not weakly convergent).

Theorem

Let X be a Banach space. If the dual X^* contains a copy of c_0 , then this copy is not complemented.

For a compact space K, TFAE:

- C(K) admits an operator onto c_0 ,
- \bigcirc C(K) contains a complemented copy of c_0 ,
- **③** there is a non-weakly compact operator $C(K) \rightarrow c_0$,
- C(K) is not a Grothendieck space (there is a weak* convergent sequence in C(K)* which is not weakly convergent).

Theorem

Let X be a Banach space. If the dual X^* contains a copy of c_0 , then this copy is not complemented. Consequently, there is no complemented copy of c_0 in Lip₀(M) for any metric space M.

Theorem (Lindenstrauss)

For every Banach space X, the space $Lip_0(X)$ contains a complemented copy of the dual space X^* .

Theorem (Lindenstrauss)

For every Banach space X, the space $Lip_0(X)$ contains a complemented copy of the dual space X^* .

Corollary

 $Lip_0(c_0)$ contains a complemented copy of ℓ_1 , so it admits an operator onto c_0 .

Theorem (Lindenstrauss)

For every Banach space X, the space $Lip_0(X)$ contains a complemented copy of the dual space X^* .

Corollary

 $Lip_0(c_0)$ contains a complemented copy of ℓ_1 , so it admits an operator onto c_0 .

Theorem (Dalet)

 $Lip_0(\ell_1)$ contains a complemented copy of ℓ_1 .

Lipschitz retracts

Proposition

Let $M \subseteq N$. If M is a Lipschitz retract of N, then $\operatorname{Lip}_0(M)$ is isomorphic to a complemented subspace of $\operatorname{Lip}_0(N)$.

Lipschitz retracts

Proposition

Let $M \subseteq N$. If M is a Lipschitz retract of N, then $\operatorname{Lip}_0(M)$ is isomorphic to a complemented subspace of $\operatorname{Lip}_0(N)$. In particular, if $\operatorname{Lip}_0(M)$ admits an operator onto c_0 , then so does $\operatorname{Lip}_0(N)$.

Proposition

Let $M \subseteq N$. If M is a Lipschitz retract of N, then $\operatorname{Lip}_0(M)$ is isomorphic to a complemented subspace of $\operatorname{Lip}_0(N)$. In particular, if $\operatorname{Lip}_0(M)$ admits an operator onto c_0 , then so does $\operatorname{Lip}_0(N)$.

Corollary

If a Banach space X contains a complemented copy of ℓ_1 , then $\operatorname{Lip}_0(X)$ contains a complemented copy of ℓ_1 .

Proposition

Let $M \subseteq N$. If M is a Lipschitz retract of N, then $\operatorname{Lip}_0(M)$ is isomorphic to a complemented subspace of $\operatorname{Lip}_0(N)$. In particular, if $\operatorname{Lip}_0(M)$ admits an operator onto c_0 , then so does $\operatorname{Lip}_0(N)$.

Corollary

If a Banach space X contains a complemented copy of ℓ_1 , then $\operatorname{Lip}_0(X)$ contains a complemented copy of ℓ_1 .

Theorem

 c_0 is an absolute Lipschitz retract, i.e. for every metric spaces X and Y, if $c_0 \subseteq X$ and $\varphi \colon c_0 \to Y$ is Lipschitz, then φ extends to a Lipschitz mapping $\Phi \colon X \to Y$.

Proposition

Let $M \subseteq N$. If M is a Lipschitz retract of N, then $\operatorname{Lip}_0(M)$ is isomorphic to a complemented subspace of $\operatorname{Lip}_0(N)$. In particular, if $\operatorname{Lip}_0(M)$ admits an operator onto c_0 , then so does $\operatorname{Lip}_0(N)$.

Corollary

If a Banach space X contains a complemented copy of ℓ_1 , then $\operatorname{Lip}_0(X)$ contains a complemented copy of ℓ_1 .

Theorem

 c_0 is an absolute Lipschitz retract, i.e. for every metric spaces X and Y, if $c_0 \subseteq X$ and $\varphi: c_0 \to Y$ is Lipschitz, then φ extends to a Lipschitz mapping $\Phi: X \to Y$.

Corollary

If a Banach space X contains an isomorphic copy of c_0 , then $Lip_0(X)$ admits an operator onto c_0 .

Corollary

Let X be an infinite-dimensional Banach space. Then, $Lip_0(X)$ admits an operator onto c_0 , provided that any of the following hold:

• X = C(K) for some infinite compact K,

Corollary

Let X be an infinite-dimensional Banach space. Then, $Lip_0(X)$ admits an operator onto c_0 , provided that any of the following hold:

 X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ≃ Lip₀(c₀(w(K))),

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ~ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra,

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ≃ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra, or X is the *n*-th dual of a C*-algebra,

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ~ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra, or X is the *n*-th dual of a C*-algebra,
- X is the predual of a C*-algebra,

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ~ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra, or X is the *n*-th dual of a C*-algebra,
- X is the predual of a C*-algebra,
- $X = \mathcal{B}(H)$ for some Hilbert space,

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ~ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra, or X is the *n*-th dual of a C*-algebra,
- X is the predual of a C*-algebra,
- $X = \mathcal{B}(H)$ for some Hilbert space,
- Solution X = L(Y, Z) for a normed space Y and a Banach space Z which contains c₀,

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ~ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra, or X is the *n*-th dual of a C*-algebra,
- **③** X is the predual of a C*-algebra,
- $X = \mathcal{B}(H)$ for some Hilbert space,
- Solution X = L(Y, Z) for a normed space Y and a Banach space Z which contains c₀,
- $X = Bil(Y \times W, Z)$ for some Banach spaces Y, W, Z such that Z contains c_0 (recall: $Bil(Y \times W, Z) \cong \mathcal{L}(Y \widehat{\otimes}_{\pi} W, Z)$),

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ~ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra, or X is the *n*-th dual of a C*-algebra,
- **③** X is the predual of a C*-algebra,
- $X = \mathcal{B}(H)$ for some Hilbert space,
- Solution X = L(Y, Z) for a normed space Y and a Banach space Z which contains c₀,
- $X = Bil(Y \times W, Z)$ for some Banach spaces Y, W, Z such that Z contains c_0 (recall: $Bil(Y \times W, Z) \cong \mathcal{L}(Y \widehat{\otimes}_{\pi} W, Z)$),
- $X = \text{Lip}_0(M)$ for some metric space M,

Corollary

- X = C(K) for some infinite compact K, Candido-Guzmán (2022): Lip₀(C(K)) ~ Lip₀(c₀(w(K))),
- 2 X is a C*-algebra, or X is the *n*-th dual of a C*-algebra,
- **③** X is the predual of a C*-algebra,
- $X = \mathcal{B}(H)$ for some Hilbert space,
- Solution X = L(Y, Z) for a normed space Y and a Banach space Z which contains c₀,
- $X = Bil(Y \times W, Z)$ for some Banach spaces Y, W, Z such that Z contains c_0 (recall: $Bil(Y \times W, Z) \cong \mathcal{L}(Y \widehat{\otimes}_{\pi} W, Z)$),
- $X = \text{Lip}_0(M)$ for some metric space M,
- **③** $X = \mathcal{F}(M)$ for some metric space M.

Theorem

If a metric space M contains a bilipschitz copy of the unit sphere S_{c_0} of c_0 , then $\text{Lip}_0(M)$ admits an operator onto c_0 .

Theorem

If a metric space M contains a bilipschitz copy of the unit sphere S_{c_0} of c_0 , then $\text{Lip}_0(M)$ admits an operator onto c_0 .

Theorem (Raynaud)

 ℓ_1 does not contain any bilipschitz (or even uniform) copies of S_{c_0} .

Theorem

If a metric space M contains a bilipschitz copy of the unit sphere S_{c_0} of c_0 , then $\text{Lip}_0(M)$ admits an operator onto c_0 .

Theorem (Raynaud)

 ℓ_1 does not contain any bilipschitz (or even uniform) copies of S_{c_0} .

Another example

$$M = \bigsqcup_{n \in \mathbb{N}} \ell_{\infty}^{n}$$

Lip₀(M) $\simeq \left(\bigoplus_{n=0}^{\infty} \text{Lip}_{0}(\ell_{\infty}^{n}) \right)_{\infty} \simeq \text{Lip}_{0}(c_{0})$

Theorem

If a metric space M contains a bilipschitz copy of the unit sphere S_{c_0} of c_0 , then $\text{Lip}_0(M)$ admits an operator onto c_0 .

Theorem (Raynaud)

 ℓ_1 does not contain any bilipschitz (or even uniform) copies of S_{c_0} .

Another example

$$M = \bigsqcup_{n \in \mathbb{N}} \ell_{\infty}^{n}$$

Lip₀(M) $\simeq \left(\bigoplus_{n=0}^{\infty} \text{Lip}_{0}(\ell_{\infty}^{n}) \right)_{\infty} \simeq \text{Lip}_{0}(c_{0})$

Question

Does $Lip_0([0,1]^2)$ admit an operator onto c_0 ?

 ${\sf Recall}: \, {\sf Lip}_0([0,1]) \simeq \ell_\infty.$

Question

Does there exist a Banach space X of dimension ≥ 2 such that $Lip_0(X)$ does not admit any operator onto c_0 ?

Question

Does there exist an operator from $Lip_0(\ell_2)$ onto c_0 ?

Question

Does there exist a Banach space X of dimension ≥ 2 such that $Lip_0(X)$ does not admit any operator onto c_0 ?

Question

Does there exist an operator from $Lip_0(\ell_2)$ onto c_0 ?

Question

Do there exist infinite-dimensional Banach spaces X and Y of the same density such that $Lip_0(X)$ and $Lip_0(Y)$ are not isomorphic?

Question

Does there exist a Banach space X of dimension ≥ 2 such that $Lip_0(X)$ does not admit any operator onto c_0 ?

Question

Does there exist an operator from $Lip_0(\ell_2)$ onto c_0 ?

Question

Do there exist infinite-dimensional Banach spaces X and Y of the same density such that $Lip_0(X)$ and $Lip_0(Y)$ are not isomorphic?

If not, then:

For every infinite-dimensional Banach space X of density $\kappa \ge \aleph_0$, Lip₀(X) contains a complemented copy of the dual space Y^{*} of every Banach space Y of density $\le \kappa$.

Question

Does there exist a Banach space X of dimension ≥ 2 such that $Lip_0(X)$ does not admit any operator onto c_0 ?

Question

Does there exist an operator from $Lip_0(\ell_2)$ onto c_0 ?

Question

Do there exist infinite-dimensional Banach spaces X and Y of the same density such that $Lip_0(X)$ and $Lip_0(Y)$ are not isomorphic?

If not, then:

For every infinite-dimensional Banach space X of density $\kappa \ge \aleph_0$, Lip₀(X) contains a complemented copy of the dual space Y* of every Banach space Y of density $\le \kappa$.

Johnson (1971): There exists a separable Banach space E such that E^* contains a complemented copy of F^* for every separable F.

Thank you for your attention!