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Abstract

Let M be a complete metric space with base point 0, and let Lip0(M) denote the Banach
space of Lipschitz functions on M that vanish at 0. The Lipschitz-free space F (M) ⊆
Lip0(M)∗ over M is defined as the closed linear span of the set of functionals f 7→ f (x),
x ∈ M, and is an isometric predual of Lip0(M). These spaces have important applications
in the linear and nonlinear theory of Banach spaces.

Let M̃ = {(x, y) ∈ M × M : x , y} and denote by βM̃ its Stone-Čech compactification.
Define the de Leeuw transform Φ : Lip0(M)→ C(βM̃) by

Φ f (x, y) =
f (x) − f (y)

d(x, y)
, f ∈ Lip0(M), (x, y) ∈ M̃,

and extending continuously to βM̃. This is a linear isometric embedding whose dual Φ∗ :
C(βM̃)∗ → Lip0(M)∗ is therefore a quotient map. Thus, every element of Lip0(M)∗ can be
represented (non-uniquely) by Radon measures on βM̃ via the de Leeuw transform.

Given ψ ∈ Lip0(M)∗, there exists a positive Radon measure µ on βM̃ such that Φ∗µ = ψ
and ∥µ∥ = ∥ψ∥. We call such a measure µ an optimal representation of ψ. In this mini-
course, we investigate the properties of optimal representations µ such that µ(M̃) = ∥µ∥
(in which case Φ∗µ ∈ F (M)) or more generally µ(M̃) > 0. We illustrate connections
with cyclical monotonicity from optimal transport theory, elements of F (M) that can be
induced by measures on M, and present an application of this work to the extreme point
problem in Lipschitz-free spaces.

This is joint work with Ramón Aliaga (Universitat Politècnica de València) and Eva Per-
necká (Czech Technical University, Prague).
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1 Background and motivation

1.1 Lipschitz-free spaces and convex series of molecules

Definition 1.1

1. Let (M, d) be a complete metric space with base point 0. Define the Banach space

Lip0(M) =
{
f : M → R : f is Lipschitz and f (0) = 0

}
,

with norm

∥ f ∥ := Lip( f ) = sup
{

f (x) − f (y)
d(x, y)

: x, y ∈ M, x , y
}
.

2. Define M̃ =
{
(x, y) ∈ M2 : x , y

}
and the set E =

{
mxy : (x, y) ∈ M̃

}
⊆ S Lip0(M)∗ of

elementary molecules mxy, where〈
mxy, f

〉
=

f (x) − f (y)
d(x, y)

, f ∈ Lip0(M).

3. Define the (Lipschitz-) free Banach space

F (M) = span∥·∥(E) ⊆ Lip0(M)∗.

The free space F (M) is an isometric predual of Lip0(M). Free spaces, known also as Arens-
Eells spaces and transportation cost spaces, are a popular field of study and have found nu-
merous applications in the linear and non-linear theory of Banach spaces. They give us a tool
to linearise Lipschitz maps in a canonical way. We refer the reader to [4, Introduction] and
references therein for an overview of this topic. A comprehensive introduction to Lipschitz
and Lipschitz-free spaces (and much more) can be found in [9], where the latter are known as
Arens-Eells spaces. In these lectures we present some recent work from [4], which is the first
in a planned series of papers on so-called de Leeuw representations of elements of Lip0(M)∗

(e.g. [5]). The first result is well-known.

Proposition 1.2 We have BF (M) = conv∥·∥(E).

Proof. Evidently conv∥·∥(E) ⊆ BF (M). Conversely, given m < conv∥·∥(E), by the Hahn-Banach
separation theorem there exists f ∈ Lip0(M) such that

⟨m, f ⟩ > sup
{
⟨p, f ⟩ : p ∈ conv∥·∥(E)

}
= ∥ f ∥ ,

hence ∥m∥ > 1 and m < BF (M). □

Exercise 1.3 Let X be a normed space and let H ⊆ X with BX = conv∥·∥(H). Show that, given
x ∈ X and ε > 0, there exist xn ∈ H and an ≥ 0, n ∈ N satisfying

x =
∞∑

n=1

anxn and
∞∑

n=1

an ≤ ∥x∥ + ε.
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This exercise is very similar to [8, Lemma 3.100]. As a corollary we obtain the following
well-known result.

Corollary 1.4 Given m ∈ F (M) and ε > 0, there exist (xn, yn) ∈ M̃ and an ≥ 0, n ∈ N, such
that

m =
∞∑

n=1

anmxnyn and
∞∑

n=1

an ≤ ∥m∥ + ε.

We distinguish those elements of F (M) for which ε above can be set to 0.

Definition 1.5 (Aliaga, Rueda Zoca 20 [6]) We say that m ∈ F (M) is a convex series of
molecules if there exist (xn, yn) ∈ M̃ and an ≥ 0, n ∈ N, such that

m =
∞∑

n=1

anmxn,yn and
∞∑

n=1

an = ∥m∥ .

1.2 The extreme point conjecture

Identifying the set ext BX extreme points (if any) of the unit ball of a Banach space X is a
standard goal when trying to understand its structure. The question of characterising ext BF (M)

dates back to results of Weaver in the 1990s (see e.g. [9, Sections 3.5 and 3.6]). Weaver has
posed the following conjecture.

Conjecture 1.6 Every extreme point of BF (M) is an elementary molecule: ext BF (M) ⊆ E.

This conjecture is natural, given e.g. Proposition 1.2. A number of partial positive results have
been obtained over the years; in these lectures we present two of them.

Proposition 1.7 (APPP 20 [3, Remark 3.4]) If m ∈ ext BF (M) is a convex series of molecules
then m ∈ E.

Proof. Let m =
∑∞

n=1 anmxnyn ∈ ext BF (M) be a convex series of molecules where, without loss
of generality, a1 > 0. If a1 = 1 then m = mx1y1 . Else a1 ∈ (0, 1) and,

m = a1mx1y1 + (1 − a1)
∞∑

n=2

an

1 − a1
mxnyn .

giving m = mx1y1 . □

Definition 1.8 The metric space M is proper if all of its closed bounded subsets are compact.

Every compact metric space is proper, and every closed subset of Rn, n ∈ N, (with respect
to any norm) is proper. No proper space can contain a bounded uniformly separated infinite
sequence, hence no unit ball BX, dim X = ∞, is proper.

Theorem 1.9 (Aliaga 22 [1, Theorem 1]) If M is proper then ext BF (M) ⊆ E.

In these lectures we generalise the notion of convex series of molecules in order to obtain a
new positive case of Conjecture 1.6.
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2 de Leeuw representations and convex integrals of mole-
cules

2.1 Optimal de Leeuw representations

To generalise the notion of convex series of molecules, we use a representation of elements
Lip0(M)∗ due to de Leeuw.

Definition 2.1 Given a Tychonoff (completely regular Hausdorff) topological space X, the
Stone-Čech compactification βX of X is a Hausdorff compactification of X characterised (up
to homeomorphism) by the extension property: any continuous map f : X → K (K compact
Hausdorff) can be extended uniquely to a continuous map f : βX → K.

If X is completely metrisable then X is a Gδ subset of βX.

Definition 2.2 Define Φ : Lip0(M)→ C(βM̃) by first setting

(Φ f )(x, y) =
f (x) − f (y)

d(x, y)
=

〈
mxy, f

〉
, (x, y) ∈ M̃,

and then extending continuously to its Stone-Čech compactification βM̃. We call both Φ and
its dual Φ∗ : C(βM̃)∗ ≡ M(βM̃)→ Lip0(M)∗ de Leeuw transforms.

Exercise 2.3 Show that Φ is an isometric embedding and Φ∗ is a quotient map.

Definition 2.4 Given ψ ∈ Lip0(M)∗, we call µ ∈ M(βM̃) a (de Leeuw) representation of ψ if
Φ∗µ = ψ.

We have ∥Φ∗µ∥ ≤ ∥µ∥ always; we focus on those positive µ for which ∥Φ∗µ∥ = ∥µ∥.

Definition 2.5 Define the set of optimal representations

Mop(βM̃) =
{
µ ∈ M(βM̃) : µ ≥ 0 and ∥Φ∗µ∥ = ∥µ∥

}
.

Example 2.6 Let (x, y) ∈ M̃. Then Φ∗δ(x,y) = mxy and δ(x,y) ∈ Mop(βM̃) as
∥∥∥δ(x,y)

∥∥∥ = 1 =
∥∥∥mxy

∥∥∥.

Example 2.7 Let M := [0, 1] have base point 0. Define positive µn ∈ M(βM̃)+, n ≥ 0, by

µn =
1
2n

2n∑
i=1

δ( i
2n ,

i−1
2n ).

Then µn ∈ Mop(βM̃), with Φ∗µn = m10: ∥µn∥ = 1 = ∥m10∥ and

⟨Φ∗µn, f ⟩ = ⟨µn,Φ f ⟩ =
1
2n

2n∑
i=1

f
(

i
2n

)
− f

(
i−1
2n

)
2−n = f (1) − f (0) = ⟨m10, f ⟩ , f ∈ Lip0(M),

giving Φ∗µn = m10. Any w∗-accumulation point µ of (µn) is also an optimal representation of
m10; any such point is supported entirely on the ‘diagonal’ βM̃ \ M̃. On the other hand, the
representation µ′ := δ(1,0) + δ( 1

2 ,0) + δ(0, 1
2 ) is not optimal: ∥µ′∥ = 3, with the mass reflected in the

diagonal ‘cancelling out’ because Φ f (x, y) = −Φ f (y, x), (x, y) ∈ M̃.
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We explore some basic properties ofMop(βM̃). The reflection above happens to be key.

Definition 2.8 Define the reflection map r : βM̃ → βM̃ by setting r(x, y) = (y, x), (x, y) ∈ M̃,
and then extending continuously to βM̃. Then define the isometry R : C(βM̃) → C(βM̃) by
R f = f ◦ r.

Note that R∗µ = r#µ, where # denotes pushforward.

Exercise 2.9 Show that RΦ = −Φ, and thus Φ∗R∗ = −Φ∗.

We need the next definition before presenting our list of basic properties ofMop(βM̃).

Definition 2.10 Let µ ∈ M(βM̃) and let E ⊆ βM̃ be Borel. We say that µ is concentrated on
E if µ(A) = µ(A ∩ E) whenever A ⊆ βM̃ is Borel. We define the restriction µ↾E of µ to E by
µ↾E(A) = µ(A ∩ E), A Borel.

Of course, µ↾E is concentrated on E.

Proposition 2.11

1. For any ψ ∈ Lip0(M)∗ there is µ ∈ Mop(βM̃) such that Φ∗µ = ψ.

2. If µ ∈ Mop(βM̃) then c · µ ∈ Mop(βM̃) for every c ≥ 0.

3. If µ ∈ Mop(βM̃) and λ ∈ M(βM̃) satisfies 0 ≤ λ ≤ µ, then λ ∈ Mop(βM̃).

4. If µ ∈ Mop(βM̃) and E ⊆ βM̃ is Borel then µ↾E ∈ Mop(βM̃).

Proof. (1) (is [1, Proposition 3] with a different proof) Let ψ ∈ Lip0(M)∗. Then ψ ◦ Φ−1 ∈

(ΦLip0(M))∗. By the Hahn-Banach theorem we extend ψ ◦ Φ−1 to ν ∈ M(βM̃), such that
∥ν∥ =

∥∥∥ψ ◦ Φ−1
∥∥∥ = ∥ψ∥. Then

⟨Φ∗ν, f ⟩ = ⟨ν,Φ f ⟩ = ⟨ψ, f ⟩ ,

giving Φ∗ν = ψ. Now set µ = ν+ + R∗ν−, where ν = ν+ − ν− is the Jordan decomposition of ν.
Then

∥µ∥ =
∥∥∥ν+∥∥∥ + ∥∥∥R∗ν−

∥∥∥ = ∥∥∥ν+∥∥∥ + ∥∥∥ν−∥∥∥ = ∥ν∥ ,
and, by Exercise 2.9

Φ∗µ = Φ∗ν+ + Φ∗R∗ν− = Φ∗(ν+ − ν−) = Φ∗ν = ψ.

(2) is trivial. For part (3) notice that

∥Φ∗µ∥ ≤ ∥Φ∗λ∥ + ∥Φ∗(µ − λ)∥ ≤ ∥λ∥ + ∥µ − λ∥ = ∥µ∥ = ∥Φ∗µ∥

and therefore ∥λ∥ = ∥Φ∗λ∥ as well. (4) is a particular case of (3). □
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2.2 Convex integrals of molecules

Recall that M̃ is a Gδ (hence Borel) subset of βM̃. Let µ ∈ Mop(βM̃), with ψ = Φ∗µ. Then

⟨ψ, f ⟩ = ⟨µ,Φ f ⟩ =
∫
βM̃

(Φ f )(ζ) dµ(ζ)

=

∫
βM̃\M̃

(Φ f )(ζ) dµ(ζ) +
∫

M̃
(Φ f )(x, y) dµ(x, y), f ∈ Lip0(M).

Hereafter we will be interested in when µ can be chosen to be concentrated on M̃, so that the
first integral on the second line above vanishes. Before presenting the next key result, it will
help to recall the notion of the support of a measure.

Definition 2.12 Let µ ∈ M(βM̃) be positive. Define

supp(µ) =
{
ζ ∈ βM̃ : µ(U) > 0 whenever U ∋ ζ is open in βM̃

}
and suppM̃(µ) =

{
(x, y) ∈ M̃ : µ(U) > 0 whenever U ∋ (x, y) is open in M̃

}
.

For such µ it holds that µ is concentrated on supp(µ): ∥µ∥ = µ(supp(µ)), and if µ is concentrated
on M̃ then suppM̃(µ) = supp(µ) ∩ M̃.

Proposition 2.13 If µ ∈ M(βM̃) then

Φ∗(µ↾M̃) =
∫

M̃
mxy dµ(x, y)

as a Bochner integral on F (M).

Proof. Assume without loss of generality that µ = µ↾M̃. We first check that the integral in the
statement is a valid Bochner integral. Since

∥∥∥mxy

∥∥∥ = 1 and ∥µ∥ < ∞, it is enough to verify that
the mapping (x, y) 7→ mxy is measurable, i.e. that it is weakly measurable and almost separably
valued (see e.g. [7, Propositions 5.1 and 5.2]). The former means that the mapping (x, y) 7→〈
mxy, f

〉
is measurable for each f ∈ F (M)∗ = Lip0(M), which is obvious as that mapping is

precisely Φ f . For the latter, as µ is Radon, µ is concentrated on supp(|µ|) ∩ M̃ = suppM̃(|µ|).
This set is separable as M̃ is metrisable, so we conclude that the integral is valid and represents
an element of F (M). To verify the equality, we only need to check that〈∫

M̃
mxy dµ(x, y), f

〉
=

∫
M̃

〈
mxy, f

〉
dµ(x, y) =

∫
M̃
Φ f (x, y) dµ(x, y) = ⟨Φ∗µ, f ⟩

for any f ∈ Lip0(M). □

The converse of Proposition 2.13 does not hold, in the sense that not every de Leeuw rep-
resentation µ of an element of F (M) is concentrated on M̃; in fact, sometimes they must be
supported entirely outside M̃ – see Theorem 3.8 below.

Definition 2.14 We say that m ∈ F (M) is a convex integral of molecules if m = Φ∗µ for
some µ ∈ Mop(βM̃) concentrated on M̃.
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3 Results on convex integrals of molecules

3.1 Relationship with convex series of molecules

Proposition 3.1 Every convex series of molecules is a convex integral of molecules.

Proof. Let m =
∑∞

n=1 anmxnyn , where an ≥ 0, (xn, yn) ∈ M̃, n ∈ N, and
∑∞

n=1 an = ∥m∥. Set
µ =

∑∞
n=1 anδ(xn,yn), which is concentrated on M̃. Then ∥µ∥ =

∑∞
n=1 an = ∥m∥ and

Φ∗µ =

∞∑
n=1

anΦ
∗δ(xn,yn) =

∞∑
n=1

anmxnyn = m. □

Proposition 3.2 If M is scattered, then every convex integral of molecules in F (M) is also a
convex series of molecules.

Proof (sketch). Let m ∈ F (M) have a representation µ ∈ Mop(βM̃) concentrated on M̃. As
M is scattered, M̃ is scattered also, and it follows that suppM̃(µ) (which is a Polish space) is
countable. Thus µ is atomic, i.e. µ =

∑∞
n=1 anδ(xn,yn), with an ≥ 0, (xn, yn) ∈ M̃ and

∑∞
n=1 an =

∥µ∥ = ∥m∥. As above we obtain m =
∑∞

n=1 anmxnyn . □

Given a metric space (M, d) and a real number θ ∈ (0, 1), the snowflake Mθ is the metric space
(M, dθ). It is easy to check that dθ is a metric on M.

Proposition 3.3 Let M = [0, 1] and θ ∈ (0, 1). Then there is a convex integral of molecules in
F (Mθ) that is not a convex series of molecules.

3.2 Majorisable elements and uniformly discrete spaces

Definition 3.4 Let m ∈ F (M).

1. We say that m is positive if ⟨m, f ⟩ ≥ 0 whenever f ∈ Lip0(M) satisfies f ≥ 0.

2. We say that m ∈ F (M) is majorisable if m = m1 − m2, where m1,m2 are positive.

Theorem 3.5 Let m ∈ F (M). Then m is majorisable if and only if it is a convex integral of
molecules with a representation µ ∈ Mop(M̃) satisfying∫

M̃

d(x, 0)
d(x, y)

dµ(x, y) < ∞.

Definition 3.6 A metric space M is called uniformly discrete if there exists r > 0 such that
d(x, y) ≥ r whenever x, y ∈ M, x , y.

Observe that all uniformly discrete metric spaces are scattered, and no infinite uniformly dis-
crete space can be proper.

Corollary 3.7 If M is uniformly discrete and bounded then every element of F (M) is a convex
series of molecules.

Proof. By [2, Theorem 6.2], every element of F (M) is majorisable. The conclusion follows
from Theorem 3.5 and Proposition 3.2. □
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3.3 Not all free space elements are convex integrals of molecules

Theorem 3.8 below shows that it is common for free spaces to contain elements that fail to be
convex integrals of molecules in a dramatic way.

Theorem 3.8 Let M contain an isometric copy of a subset of R with positive Lebesgue mea-
sure. Then there exists m ∈ F (M) such that supp(µ) ∩ M̃ = ∅ whenever µ ∈ Mop(βM̃)
represents m.

The following example is a special case of the above which contains the essential idea.

Example 3.9 Let M = [0, 1] and let C ⊆ M be a nowhere dense ‘fat Cantor set’. Then

[0, 1] \C =
∞⋃

n=1

(an, bn),

where (an, bn) ⊆ [0, 1] are pairwise disjoint open intervals such that
∑∞

n=1(bn − an) < 1.
Set

m = m10 −

∞∑
n=1

(bn − an)mbnan ∈ F ([0, 1]).

Then supp(µ) ∩ M̃ = ∅ whenever µ ∈ Mop(βM̃) represents m.

To prove Example 3.9 we need the following lemma, which is an interesting result in its own
right; among other things it is the first step in revealing the intimate connection between optimal
de Leeuw representations and the idea of cyclical monotonicity from optimal transport theory;
alas, there is not time in these lectures to explore this connection.

Lemma 3.10 Let µ ∈ Mop(βM̃) represent ψ ∈ Lip0(M)∗ and suppose ⟨ψ, f ⟩ = ∥ψ∥ for some
f ∈ S Lip0(M). Then Φ f (ζ) = 1 whenever ζ ∈ supp(µ).

Proof. Suppose Φ f (ζ) < 1 for some ζ ∈ supp(µ). By continuity, there exists a < 1 and open
U ∋ ζ such that Φ f ≤ a on U. But then µ(U) > 0 and

∥µ∥ = ∥ψ∥ = ⟨ψ, f ⟩ =
∫
βM̃
Φ f dµ ≤

∫
βM̃\U

dµ + a
∫

U
dµ < ∥µ∥ . □

Proof of Example 3.9. Let ν denote Lebesgue measure on [0, 1]. First we show that ∥m∥ =
ν(C) > 0. Given f ∈ BLip0(M), by absolute continuity of f we have ∥ f ′∥∞ ≤ 1 and (recalling that
f (0) = 0)

⟨m, f ⟩ = f (1) −
∞∑

n=1

( f (bn) − f (an))

=

∫ 1

0
f ′(x) dx −

∞∑
n=1

∫ bn

an

f ′(x) dν(x) =
∫

C
f ′(x) dν(x) ≤ ν(C).

Consequently ∥m∥ ≤ ν(C).
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Now define g ∈ BLip0(M) by g(x) =
∫ x

0
1C dν = ν([0, x] ∩C). Then g′ = 1C ν-a.e. and

⟨m, g⟩ =
∫

C
g′(x) dν(x) = ν(C),

so ∥m∥ = ⟨m, g⟩ = ν(C).
We claim that (Φg)(x, y) < 1 whenever (x, y) ∈ M̃, giving supp(µ) ∩ M̃ = ∅ by Lemma 3.10.
Indeed, for x > y

(Φg)(x, y) =
ν([0, x] ∩C) − ν([0, y] ∩C)

x − y
=
ν([y, x] ∩C)

x − y
< 1,

because C is nowhere dense, and (Φg)(x, y) ≤ 0 for x < y as g is an increasing function. □

4 The extreme point conjecture for free spaces

4.1 New results

Theorem 4.1 Let m ∈ ext BF (M), and let µ ∈ Mop(βM̃) represent m and satisfy µ(M̃) > 0.
Then m ∈ E. In particular, this holds if m is a convex integral of molecules.

Lemma 4.2 (Aliaga 22 [1, Lemma 10]) Let m ∈ ext BF (M) and let µ ∈ Mop(βM̃) represent m.
If λ ∈ M(βM̃) is such that 0 ≤ λ ≤ µ and Φ∗λ ∈ F (M), then Φ∗λ = ∥λ∥ · m.

Proof. Note that λ, µ − λ ∈ Mop(βM̃) by Proposition 2.11(c). If either of them is 0 then we’re
done. Otherwise

m = Φ∗λ + Φ∗(µ − λ) = ∥λ∥ · Φ∗
(
λ

∥λ∥

)
+ ∥µ − λ∥ · Φ∗

(
µ − λ

∥µ − λ∥

)
is a convex combination of elements of BF (M) by Proposition 2.11(b), hence m = Φ∗(λ/ ∥λ∥) by
extremality. □

Proof of Theorem 4.1. By inner regularity of µwe have µ(K) > 0 for some compact set K ⊆ M̃.
By a standard compactness argument, there exists (x, y) ∈ K such that µ(U × V) > 0 whenever
U ∋ x and V ∋ y are disjoint and open in M. We claim that m = mxy, i.e. ⟨m, f ⟩ = Φ f (x, y)
whenever f ∈ Lip0(M). Given f ∈ Lip0(M) and ε > 0, by continuity of Φ f , there exist disjoint
sets U ∋ x, V ∋ y, open in M̃, such that

|Φ f (x′, y′) − Φ f (x, y)| < ε whenever (x′, y′) ∈ U × V.

Set λ = µ↾U×V . Then λ ∈ Mop(βM̃), by Proposition 2.11 (d), and is concentrated on U×V ⊆ M̃,
so Φ∗λ ∈ F (M) by Proposition 2.13. Moreover, ∥λ∥ = µ(U ×V) > 0 by the choice of (x, y). By
Lemma 4.2 we conclude m = Φ∗λ/ ∥λ∥. Thus

|⟨m, f ⟩ − Φ f (x, y)| =
∣∣∣∣∣ 1
∥λ∥
⟨Φ∗λ, f ⟩ − Φ f (x, y)

∣∣∣∣∣
=

∣∣∣∣∣ 1
∥λ∥

∫
U×V
Φ f (x′, y′) dλ(x′, y′) − Φ f (x, y)

∣∣∣∣∣
≤

1
∥λ∥

∫
U×V
|Φ f (x′, y′) − Φ f (x, y)| dλ(x′, y′) <

µ(U × V)ε
∥λ∥

= ε.

9
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It follows that m = mxy as claimed. □

Combining Theorem 3.5 and Corollary 3.7 with Theorem 4.1, we obtain a new case of the
extreme point conjecture.

Corollary 4.3 If an extreme point of BF (M) is majorisable, then it is an elementary molecule.
E.g. if M is uniformly discrete and bounded then ext BF (M) ⊆ E.
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