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Background and motivation Lipschitz-free spaces and convex series of molecules

Lipschitz-free Banach spaces
Definition 1.1

1 Let (M,d) be a complete metric space with base point 0. Define Lip0(M) to be the Banach
space of all Lipschitz functions f : M → R that vanish at 0, with norm

∥f∥ := Lip(f ) = sup

{
f (x)− f (y)

d(x , y)
: x , y ∈ M, x ̸= y

}
.

2 Define M̃ =
{
(x , y) ∈ M2 : x ̸= y

}
and the set E =

{
mxy : (x , y) ∈ M̃

}
⊆ SLip0(M)∗ of ele-

mentary molecules mxy , where

⟨mxy , f ⟩ =
f (x)− f (y)

d(x , y)
, f ∈ Lip0(M).

3 Define the (Lipschitz-) free Banach space

F(M) = span∥·∥(E) ⊆ Lip0(M)∗.
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Background and motivation Lipschitz-free spaces and convex series of molecules

Convex series of molecules
Proposition 1.2
We have BF(M) = conv∥·∥(E).

Exercise 1.3
Let X be a normed space and let H ⊆ X with BX = conv∥·∥(H). Show that, given x ∈ X and ε > 0,
there exist xn ∈ H and an ≥ 0, n ∈ N satisfying

x =
∞∑

n=1

anxn and
∞∑

n=1

an ≤ ∥x∥+ ε.
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Background and motivation Lipschitz-free spaces and convex series of molecules

Convex series of molecules
Corollary 1.4

Given m ∈ F(M) and ε > 0, there exist (xn, yn) ∈ M̃ and an ≥ 0, n ∈ N, such that

m =
∞∑

n=1

anmxnyn and
∞∑

n=1

an ≤ ∥m∥+ ε.

We distinguish those elements of F(M) for which ε above can be set to 0.

Definition 1.5 (Aliaga, Rueda Zoca 20)

We say that m ∈ F(M) is a convex series of molecules if there exist (xn, yn) ∈ M̃ and an ≥ 0,
n ∈ N, such that

m =
∞∑

n=1

anmxn,yn and
∞∑

n=1

an = ∥m∥ .
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Background and motivation The extreme point conjecture

The extreme point conjecture
Conjecture 1.6 (Weaver)
Every extreme point of BF(M) is an elementary molecule: extBF(M) ⊆ E .

Proposition 1.7 (Aliaga, Pernecká, Petitjean, Procházka 20)
If m ∈ extBF(M) is a convex series of molecules then m ∈ E .

Definition 1.8
The metric space M is proper if all of its closed bounded subsets are compact.

Theorem 1.9 (Aliaga 22)
If M is proper then extBF(M) ⊆ E .
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Optimal de Leeuw representations
Definition 2.1
Given a Tychonoff (completely regular Hausdorff) topological space X , the Stone-Čech compact-
ification βX of X is a Hausdorff compactification of X characterised (up to homeomorphism) by
the extension property: any continuous map f : X → K (K compact Hausdorff) can be extended
uniquely to a continuous map f : βX → K .

Definition 2.2
Define Φ : Lip0(M) → C(βM̃) by first setting

(Φf )(x , y) =
f (x)− f (y)

d(x , y)
= ⟨mxy , f ⟩ , (x , y) ∈ M̃,

and then extending continuously to its Stone-Čech compactification βM̃.

We call both Φ and its dual Φ∗ : C(βM̃)∗ ≡ M(βM̃) → Lip0(M)∗ de Leeuw transforms.
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Optimal de Leeuw representations
Exercise 2.3
Show that Φ is an isometric embedding and Φ∗ is a quotient map.

Definition 2.4
Given ψ ∈ Lip0(M)∗, we call µ ∈ M(βM̃) a (de Leeuw) representation of ψ if Φ∗µ = ψ.

We have ∥ψ∥ ≤ ∥µ∥ always; we focus on those positive µ for which ∥Φ∗µ∥ = ∥µ∥.

Definition 2.5
Define the set of optimal representations

Mop(βM̃) =
{
µ ∈ M(βM̃) : µ ≥ 0 and ∥Φ∗µ∥ = ∥µ∥

}
.
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Examples of optimal representations
Example 2.6

Let (x , y) ∈ M̃. Then Φ∗δ(x,y) = mxy and δ(x,y) ∈ Mop(βM̃) as
∥∥δ(x,y)∥∥ = 1 = ∥mxy∥.

Example 2.7

Let M := [0,1] have base point 0. Define positive µn ∈ M(βM̃)+, n ≥ 0, by

µn =
1
2n

2n∑
i=1

δ( i
2n ,

i−1
2n ).

Then µn ∈ Mop(βM̃), with Φ∗µn = m10: ∥µn∥ = 1 = ∥m10∥ and

⟨Φ∗µn, f ⟩ = ⟨µn,Φf ⟩ = 1
2n

2n∑
i=1

f
( i

2n

)
− f

( i−1
2n

)
2−n = f (1)− f (0) = ⟨m10, f ⟩ , f ∈ Lip0(M),

giving Φ∗µn = m10.
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Examples of optimal representations
Each µn ∈ M(βM̃)+, n ≥ 0, is an optimal representation of m10:

µ0

The above is a depiction of βM̃, with the shaded area representing the ‘diagonal’ βM̃ \ M̃.
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Examples of optimal representations
Each µn ∈ M(βM̃)+, n ≥ 0, is an optimal representation of m10:

µ2

Richard J. Smith (UCD) Lipschitz-free spaces and representing measures 17–19 July 2023 9 / 19



de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Examples of optimal representations
Each µn ∈ M(βM̃)+, n ≥ 0, is an optimal representation of m10:

µ3
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Examples of optimal representations
Each µn ∈ M(βM̃)+, n ≥ 0, is an optimal representation of m10:

µ

Any w∗-accumulation point µ of (µn) is also an optimal representation of m10; any such point is
supported entirely on the ‘diagonal’ βM̃ \ M̃.
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Examples of optimal representations
Each µn ∈ M(βM̃)+, n ≥ 0, is an optimal representation of m10:

µ′

On the other hand, the representation µ′ := δ(1,0) + δ( 1
2 ,0)

+ δ(0, 1
2 )

is not optimal: ∥µ′∥ = 3, with the

mass reflected in the diagonal ‘cancelling out’ because Φf (x , y) = −Φf (y , x), (x , y) ∈ M̃.
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Basic properties of optimal representations
Definition 2.8
Define the reflection map r : βM̃ → βM̃ by setting r(x , y) = (y , x), (x , y) ∈ M̃, and then extending
continuously to βM̃.

Then define the isometry R : C(βM̃) → C(βM̃) by Rf = f ◦ r.

Exercise 2.9
Show that RΦ = −Φ, and thus Φ∗R∗ = −Φ∗.
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de Leeuw representations and convex integrals of molecules Optimal de Leeuw representations

Basic properties of optimal representations
Definition 2.10
Let µ ∈ M(βM̃) and let E ⊆ βM̃ be Borel. We say that µ is concentrated on E if µ(A) = µ(A ∩ E)

whenever A ⊆ βM̃ is Borel.

We define the restriction µ↾E of µ to E by µ↾E(A) = µ(A ∩ E), A Borel.

Proposition 2.11
1 For any ψ ∈ Lip0(M)∗ there is µ ∈ Mop(βM̃) such that Φ∗µ = ψ.
2 If µ ∈ Mop(βM̃) then c · µ ∈ Mop(βM̃) for every c ≥ 0.
3 If µ ∈ Mop(βM̃) and λ ∈ M(βM̃) satisfies 0 ≤ λ ≤ µ, then λ ∈ Mop(βM̃).
4 If µ ∈ Mop(βM̃) and E ⊆ βM̃ is Borel then µ↾E ∈ Mop(βM̃).
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Basic properties of optimal representations
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de Leeuw representations and convex integrals of molecules Convex integrals of molecules

The support of a measure
Definition 2.12
Let µ ∈ M(βM̃) be positive. Define

supp(µ) =
{
ζ ∈ βM̃ : µ(U) > 0 whenever U ∋ ζ is open in βM̃

}
and suppM̃(µ) =

{
(x , y) ∈ M̃ : µ(U) > 0 whenever U ∋ (x , y) is open in M̃

}
.

For such µ it holds that µ is concentrated on supp(µ): ∥µ∥ = µ(supp(µ)), and if µ is concentrated on
M̃ then suppM̃(µ) = supp(µ) ∩ M̃.
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de Leeuw representations and convex integrals of molecules Convex integrals of molecules

Convex integrals of molecules
Proposition 2.13

If µ ∈ M(βM̃) then

Φ∗(µ↾M̃) =

∫
M̃

mxy dµ(x , y)

as a Bochner integral on F(M).

Definition 2.14
We say that m ∈ F(M) is a convex integral of molecules if m = Φ∗µ for some µ ∈ Mop(βM̃)

concentrated on M̃.

Richard J. Smith (UCD) Lipschitz-free spaces and representing measures 17–19 July 2023 13 / 19



de Leeuw representations and convex integrals of molecules Convex integrals of molecules

Convex integrals of molecules
Proposition 2.13

If µ ∈ M(βM̃) then

Φ∗(µ↾M̃) =

∫
M̃

mxy dµ(x , y)

as a Bochner integral on F(M).

Definition 2.14
We say that m ∈ F(M) is a convex integral of molecules if m = Φ∗µ for some µ ∈ Mop(βM̃)

concentrated on M̃.

Richard J. Smith (UCD) Lipschitz-free spaces and representing measures 17–19 July 2023 13 / 19



Results on convex integrals of molecules Relationship with convex series of molecules

Relationship with convex series of molecules
Proposition 3.1
Every convex series of molecules is a convex integral of molecules.

Proposition 3.2
If M is scattered, then every convex integral of molecules in F(M) is also a convex series of
molecules.

Proposition 3.3
Let M = [0,1] and θ ∈ (0,1). Then there is a convex integral of molecules in F(Mθ) that is not a
convex series of molecules.
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Results on convex integrals of molecules Majorisable elements and uniformly discrete spaces

Majorisable elements
Definition 3.4
Let m ∈ F(M).

1 We say that m is positive if ⟨m, f ⟩ ≥ 0 whenever f ∈ Lip0(M) satisfies f ≥ 0.

2 We say that m ∈ F(M) is majorisable if m = m1 − m2, where m1,m2 are positive.

Theorem 3.5
Let m ∈ F(M). Then m is majorisable if and only if it is a convex integral of molecules with a
representation µ ∈ Mop(M̃) satisfying∫

M̃

d(x ,0)
d(x , y)

dµ(x , y) <∞.
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Results on convex integrals of molecules Majorisable elements and uniformly discrete spaces

Uniformly discrete spaces
Definition 3.6
A metric space M is called uniformly discrete if there exists r > 0 such that d(x , y) ≥ r whenever
x , y ∈ M, x ̸= y .

Corollary 3.7
If M is uniformly discrete and bounded then every element of F(M) is a convex series of molecules.
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Results on convex integrals of molecules Not all free space elements are convex integrals of molecules

Not all free space elements are convex integrals of molecules
Theorem 3.8
Let M contain an isometric copy of a subset of R with positive Lebesgue measure. Then there exists
m ∈ F(M) such that supp(µ) ∩ M̃ = ∅ whenever µ ∈ Mop(βM̃) represents m.
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Results on convex integrals of molecules Not all free space elements are convex integrals of molecules

Fat Cantor sets
Example 3.9
Let M = [0,1] and let C ⊆ M be a nowhere dense ‘fat Cantor set’. Then

[0,1] \ C =
∞⋃

n=1

(an,bn),

where (an,bn) ⊆ [0,1] are pairwise disjoint open intervals such that
∑∞

n=1(bn − an) < 1.

Set

m = m10 −
∞∑

n=1

(bn − an)mbnan ∈ F([0,1]).

Then supp(µ) ∩ M̃ = ∅ whenever µ ∈ Mop(βM̃) represents m.

Lemma 3.10
Let µ ∈ Mop(βM̃) represent ψ ∈ Lip0(M)∗ and suppose ⟨ψ, f ⟩ = ∥ψ∥ for some f ∈ SLip0(M). Then
Φf (ζ) = 1 whenever ζ ∈ supp(µ).
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The extreme point conjecture for free spaces New results

The extreme point conjecture for free spaces
Theorem 4.1
Let m ∈ extBF(M), and let µ ∈ Mop(βM̃) represent m and satisfy µ(M̃) > 0. Then m ∈ E . In
particular, this holds if m is a convex integral of molecules.

Lemma 4.2 (Aliaga 22)

Let m ∈ extBF(M) and let µ ∈ Mop(βM̃) represent m. If λ ∈ M(βM̃) is such that 0 ≤ λ ≤ µ and
Φ∗λ ∈ F(M), then Φ∗λ = ∥λ∥ · m.

Corollary 4.3
If an extreme point of BF(M) is majorisable, then it is an elementary molecule. E.g. if M is uniformly
discrete and bounded then extBF(M) ⊆ E .
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