Lipschitz-free spaces and representing measures

XXII Lluís Santaló School, Santander, 2023

Richard J. Smith

University College Dublin

17–19 July

Lipschitz-free Banach spaces

Definition 1.1

• Let (M, d) be a complete metric space with base point 0. Define $Lip_0(M)$ to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$||f|| := \operatorname{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x, y)} : x, y \in M, x \neq y \right\}$$

Lipschitz-free Banach spaces

Definition 1.1

• Let (M, d) be a complete metric space with base point 0. Define $Lip_0(M)$ to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$\|f\| := \operatorname{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x, y)} : x, y \in M, x \neq y \right\}.$$

② Define $\widetilde{M} = \{(x, y) \in M^2 : x \neq y\}$ and the set $E = \{m_{xy} : (x, y) \in \widetilde{M}\} \subseteq S_{Lip_0(M)^*}$ of elementary molecules m_{xy} , where

$$\langle m_{xy}, f \rangle = \frac{f(x) - f(y)}{d(x, y)}, \qquad f \in \operatorname{Lip}_0(M).$$

Lipschitz-free Banach spaces

Definition 1.1

• Let (M, d) be a complete metric space with base point 0. Define $Lip_0(M)$ to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$\|f\| := \operatorname{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x, y)} : x, y \in M, x \neq y \right\}.$$

② Define $\widetilde{M} = \{(x, y) \in M^2 : x \neq y\}$ and the set $E = \{m_{xy} : (x, y) \in \widetilde{M}\} \subseteq S_{Lip_0(M)^*}$ of elementary molecules m_{xy} , where

$$\langle m_{xy}, f \rangle = \frac{f(x) - f(y)}{d(x, y)}, \qquad f \in \operatorname{Lip}_0(M).$$

Define the (Lipschitz-) free Banach space

$$\mathcal{F}(M) = \overline{\operatorname{span}}^{\|\cdot\|}(E) \subseteq \operatorname{Lip}_0(M)^*.$$

Proposition 1.2

We have $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}^{\|\cdot\|}(E)$.

Proposition 1.2

We have $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}^{\|\cdot\|}(E)$.

Exercise 1.3

Let *X* be a normed space and let $H \subseteq X$ with $B_X = \overline{\operatorname{conv}}^{\|\cdot\|}(H)$. Show that, given $x \in X$ and $\varepsilon > 0$, there exist $x_n \in H$ and $a_n \ge 0$, $n \in \mathbb{N}$ satisfying

$$x = \sum_{n=1}^{\infty} a_n x_n$$
 and $\sum_{n=1}^{\infty} a_n \le ||x|| + \varepsilon.$

Corollary 1.4

Given $m \in \mathcal{F}(M)$ and $\varepsilon > 0$, there exist $(x_n, y_n) \in \widetilde{M}$ and $a_n \ge 0$, $n \in \mathbb{N}$, such that

$$m = \sum_{n=1}^{\infty} a_n m_{x_n y_n}$$
 and $\sum_{n=1}^{\infty} a_n \leq ||m|| + \varepsilon.$

Corollary 1.4

Given $m \in \mathcal{F}(M)$ and $\varepsilon > 0$, there exist $(x_n, y_n) \in \widetilde{M}$ and $a_n \ge 0$, $n \in \mathbb{N}$, such that

$$m = \sum_{n=1}^{\infty} a_n m_{x_n y_n}$$
 and $\sum_{n=1}^{\infty} a_n \leq ||m|| + \varepsilon.$

We distinguish those elements of $\mathcal{F}(M)$ for which ε above can be set to 0.

Definition 1.5 (Aliaga, Rueda Zoca 20)

We say that $m \in \mathcal{F}(M)$ is a **convex series of molecules** if there exist $(x_n, y_n) \in \widetilde{M}$ and $a_n \ge 0$, $n \in \mathbb{N}$, such that

$$m = \sum_{n=1}^{\infty} a_n m_{x_n, y_n}$$
 and $\sum_{n=1}^{\infty} a_n = ||m||$

Conjecture 1.6 (Weaver)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: ext $B_{\mathcal{F}(M)} \subseteq E$.

Conjecture 1.6 (Weaver)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: ext $B_{\mathcal{F}(M)} \subseteq E$.

Proposition 1.7 (Aliaga, Pernecká, Petitjean, Procházka 20)

If $m \in \text{ext } B_{\mathcal{F}(M)}$ is a convex series of molecules then $m \in E$.

Conjecture 1.6 (Weaver)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: ext $B_{\mathcal{F}(M)} \subseteq E$.

Proposition 1.7 (Aliaga, Pernecká, Petitjean, Procházka 20)

If $m \in \text{ext } B_{\mathcal{F}(M)}$ is a convex series of molecules then $m \in E$.

Definition 1.8

The metric space *M* is **proper** if all of its closed bounded subsets are compact.

Conjecture 1.6 (Weaver)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: ext $B_{\mathcal{F}(M)} \subseteq E$.

Proposition 1.7 (Aliaga, Pernecká, Petitjean, Procházka 20)

If $m \in \operatorname{ext} B_{\mathcal{F}(M)}$ is a convex series of molecules then $m \in E$.

Definition 1.8

The metric space *M* is **proper** if all of its closed bounded subsets are compact.

Theorem 1.9 (Aliaga 22)

If *M* is proper then ext $B_{\mathcal{F}(M)} \subseteq E$.

Definition 2.1

Given a Tychonoff (completely regular Hausdorff) topological space X, the **Stone-Čech compactification** βX of X is a Hausdorff compactification of X characterised (up to homeomorphism) by the **extension property**: any continuous map $f : X \to K$ (K compact Hausdorff) can be extended uniquely to a continuous map $f : \beta X \to K$.

Definition 2.1

Given a Tychonoff (completely regular Hausdorff) topological space X, the **Stone-Čech compactification** βX of X is a Hausdorff compactification of X characterised (up to homeomorphism) by the **extension property**: any continuous map $f : X \to K$ (K compact Hausdorff) can be extended uniquely to a continuous map $f : \beta X \to K$.

Definition 2.2

Define Φ : Lip₀(M) $\rightarrow C(\beta \widetilde{M})$ by first setting

$$(\Phi f)(x,y) = rac{f(x) - f(y)}{d(x,y)} = \langle m_{xy}, f \rangle, \qquad (x,y) \in \widetilde{M},$$

and then extending continuously to its Stone-Čech compactification $\beta \widetilde{M}$.

Definition 2.1

Given a Tychonoff (completely regular Hausdorff) topological space X, the **Stone-Čech compactification** βX of X is a Hausdorff compactification of X characterised (up to homeomorphism) by the **extension property**: any continuous map $f : X \to K$ (K compact Hausdorff) can be extended uniquely to a continuous map $f : \beta X \to K$.

Definition 2.2

Define Φ : Lip₀(M) $\rightarrow C(\beta \widetilde{M})$ by first setting

$$(\Phi f)(x,y) = rac{f(x) - f(y)}{d(x,y)} = \langle m_{xy}, f \rangle, \qquad (x,y) \in \widetilde{M},$$

and then extending continuously to its Stone-Čech compactification $\beta \widetilde{M}$.

We call both Φ and its dual $\Phi^* : C(\beta \widetilde{M})^* \equiv \mathcal{M}(\beta \widetilde{M}) \to Lip_0(M)^*$ de Leeuw transforms.

Exercise 2.3

Show that Φ is an isometric embedding and Φ^* is a quotient map.

Exercise 2.3

Show that Φ is an isometric embedding and Φ^* is a quotient map.

Definition 2.4

Given $\psi \in Lip_0(M)^*$, we call $\mu \in \mathcal{M}(\beta \widetilde{M})$ a (de Leeuw) representation of ψ if $\Phi^* \mu = \psi$.

Exercise 2.3

Show that Φ is an isometric embedding and Φ^* is a quotient map.

Definition 2.4

Given $\psi \in Lip_0(M)^*$, we call $\mu \in \mathcal{M}(\beta \widetilde{M})$ a (de Leeuw) representation of ψ if $\Phi^* \mu = \psi$.

We have $\|\psi\| \le \|\mu\|$ always; we focus on those **positive** μ for which $\|\Phi^*\mu\| = \|\mu\|$.

Exercise 2.3

Show that Φ is an isometric embedding and Φ^* is a quotient map.

Definition 2.4

Given $\psi \in Lip_0(M)^*$, we call $\mu \in \mathcal{M}(\beta \widetilde{M})$ a (de Leeuw) representation of ψ if $\Phi^* \mu = \psi$.

We have $\|\psi\| \le \|\mu\|$ always; we focus on those **positive** μ for which $\|\Phi^*\mu\| = \|\mu\|$.

Definition 2.5

Define the set of optimal representations

$$\mathcal{M}_{\mathrm{op}}(\beta \widetilde{\textit{M}}) = \left\{ \mu \in \mathcal{M}(\beta \widetilde{\textit{M}}) \; : \; \mu \geq 0 \; \mathrm{and} \; \|\Phi^*\mu\| = \|\mu\|
ight\}.$$

Example 2.6

Let $(x, y) \in \widetilde{M}$. Then $\Phi^* \delta_{(x,y)} = m_{xy}$ and $\delta_{(x,y)} \in \mathcal{M}_{\mathrm{op}}(\beta \widetilde{M})$ as $\|\delta_{(x,y)}\| = 1 = \|m_{xy}\|$.

Example 2.6 Let $(x, y) \in \widetilde{M}$. Then $\Phi^* \delta_{(x,y)} = m_{xy}$ and $\delta_{(x,y)} \in \mathcal{M}_{\mathrm{op}}(\beta \widetilde{M})$ as $\|\delta_{(x,y)}\| = 1 = \|m_{xy}\|$.

Example 2.7

Let M := [0, 1] have base point 0. Define positive $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, by

$$u_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.$$

Example 2.6 Let $(x, y) \in \widetilde{M}$. Then $\Phi^* \delta_{(x,y)} = m_{xy}$ and $\delta_{(x,y)} \in \mathcal{M}_{\mathrm{op}}(\beta \widetilde{M})$ as $\|\delta_{(x,y)}\| = 1 = \|m_{xy}\|$.

Example 2.7

Let M := [0, 1] have base point 0. Define positive $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, by

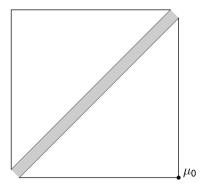
$$u_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.$$

Then $\mu_n \in \mathcal{M}_{\mathrm{op}}(\beta \widetilde{M})$, with $\Phi^* \mu_n = m_{10}$: $\|\mu_n\| = 1 = \|m_{10}\|$ and

$$\left\langle \Phi^* \mu_n, f \right\rangle = \left\langle \mu_n, \Phi f \right\rangle = \frac{1}{2^n} \sum_{i=1}^{2^n} \frac{f\left(\frac{i}{2^n}\right) - f\left(\frac{i-1}{2^n}\right)}{2^{-n}} = f(1) - f(0) = \left\langle m_{10}, f \right\rangle, \qquad f \in \operatorname{Lip}_0(M),$$

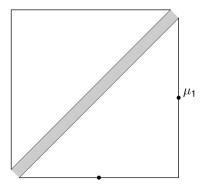
giving $\Phi^* \mu_n = m_{10}$.

Each $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, is an optimal representation of m_{10} :

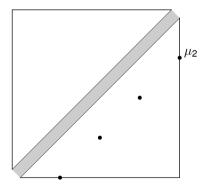


The above is a depiction of $\beta \widetilde{M}$, with the shaded area representing the 'diagonal' $\beta \widetilde{M} \setminus \widetilde{M}$.

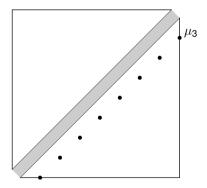
Each $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, is an optimal representation of m_{10} :



Each $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, is an optimal representation of m_{10} :



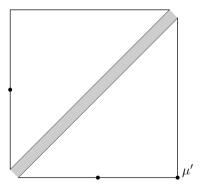
Each $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, is an optimal representation of m_{10} :



Each $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, is an optimal representation of m_{10} :

Any *w*^{*}-accumulation point μ of (μ_n) is also an optimal representation of m_{10} ; any such point is supported entirely on the 'diagonal' $\beta \widetilde{M} \setminus \widetilde{M}$.

Each $\mu_n \in \mathcal{M}(\beta \widetilde{M})^+$, $n \ge 0$, is an optimal representation of m_{10} :



On the other hand, the representation $\mu' := \delta_{(1,0)} + \delta_{(\frac{1}{2},0)} + \delta_{(0,\frac{1}{2})}$ is not optimal: $\|\mu'\| = 3$, with the mass reflected in the diagonal 'cancelling out' because $\Phi f(x, y) = -\Phi f(y, x)$, $(x, y) \in \widetilde{M}$.

Definition 2.8

Define the **reflection map** $\mathfrak{r} : \beta \widetilde{M} \to \beta \widetilde{M}$ by setting r(x, y) = (y, x), $(x, y) \in \widetilde{M}$, and then extending continuously to $\beta \widetilde{M}$.

Definition 2.8

Define the **reflection map** $\mathfrak{r} : \beta \widetilde{M} \to \beta \widetilde{M}$ by setting r(x, y) = (y, x), $(x, y) \in \widetilde{M}$, and then extending continuously to $\beta \widetilde{M}$. Then define the isometry $R : C(\beta \widetilde{M}) \to C(\beta \widetilde{M})$ by $Rf = f \circ \mathfrak{r}$.

Definition 2.8

Define the **reflection map** $\mathfrak{r} : \beta \widetilde{M} \to \beta \widetilde{M}$ by setting r(x, y) = (y, x), $(x, y) \in \widetilde{M}$, and then extending continuously to $\beta \widetilde{M}$. Then define the isometry $R : C(\beta \widetilde{M}) \to C(\beta \widetilde{M})$ by $Rf = f \circ \mathfrak{r}$.

Exercise 2.9

Show that $R\Phi = -\Phi$, and thus $\Phi^* R^* = -\Phi^*$.

Definition 2.10

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ and let $E \subseteq \beta \widetilde{M}$ be Borel. We say that μ is **concentrated** on E if $\mu(A) = \mu(A \cap E)$ whenever $A \subseteq \beta \widetilde{M}$ is Borel.

Definition 2.10

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ and let $E \subseteq \beta \widetilde{M}$ be Borel. We say that μ is **concentrated** on *E* if $\mu(A) = \mu(A \cap E)$ whenever $A \subseteq \beta \widetilde{M}$ is Borel. We define the **restriction** $\mu \upharpoonright_{E}$ of μ to E by $\mu \upharpoonright_{E} (A) = \mu(A \cap E)$, A Borel.

Definition 2.10

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ and let $E \subseteq \beta \widetilde{M}$ be Borel. We say that μ is **concentrated** on E if $\mu(A) = \mu(A \cap E)$ whenever $A \subseteq \beta \widetilde{M}$ is Borel. We define the **restriction** $\mu \upharpoonright_E$ of μ to E by $\mu \upharpoonright_E(A) = \mu(A \cap E)$, A Borel.

Proposition 2.11

• For any
$$\psi \in \operatorname{Lip}_0(M)^*$$
 there is $\mu \in \mathcal{M}_{\operatorname{op}}(\beta \widetilde{M})$ such that $\Phi^* \mu = \psi$.

Definition 2.10

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ and let $E \subseteq \beta \widetilde{M}$ be Borel. We say that μ is **concentrated** on E if $\mu(A) = \mu(A \cap E)$ whenever $A \subseteq \beta \widetilde{M}$ is Borel. We define the **restriction** $\mu \upharpoonright_E$ of μ to E by $\mu \upharpoonright_E(A) = \mu(A \cap E)$, A Borel.

Proposition 2.11

Sor any ψ ∈ Lip₀(M)* there is μ ∈ M_{op}(βM̃) such that Φ*μ = ψ.
If μ ∈ M_{op}(βM̃) then c ⋅ μ ∈ M_{op}(βM̃) for every c ≥ 0.

Definition 2.10

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ and let $E \subseteq \beta \widetilde{M}$ be Borel. We say that μ is **concentrated** on E if $\mu(A) = \mu(A \cap E)$ whenever $A \subseteq \beta \widetilde{M}$ is Borel. We define the **restriction** $\mu \upharpoonright_E$ of μ to E by $\mu \upharpoonright_E(A) = \mu(A \cap E)$, A Borel.

Proposition 2.11

- For any $\psi \in \operatorname{Lip}_0(M)^*$ there is $\mu \in \mathcal{M}_{\operatorname{op}}(\beta \widetilde{M})$ such that $\Phi^* \mu = \psi$.
- 2 If $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ then $c \cdot \mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ for every $c \geq 0$.
- If $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ and $\lambda \in \mathcal{M}(\beta \widetilde{M})$ satisfies $0 \le \lambda \le \mu$, then $\lambda \in \mathcal{M}_{op}(\beta \widetilde{M})$.

Basic properties of optimal representations

Definition 2.10

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ and let $E \subseteq \beta \widetilde{M}$ be Borel. We say that μ is **concentrated** on E if $\mu(A) = \mu(A \cap E)$ whenever $A \subseteq \beta \widetilde{M}$ is Borel. We define the **restriction** $\mu \upharpoonright_E$ of μ to E by $\mu \upharpoonright_E(A) = \mu(A \cap E)$, A Borel.

Proposition 2.11

- For any $\psi \in \operatorname{Lip}_0(M)^*$ there is $\mu \in \mathcal{M}_{\operatorname{op}}(\beta \widetilde{M})$ such that $\Phi^* \mu = \psi$.
- $lf \ \mu \in \mathcal{M}_{\rm op}(\beta \widetilde{M}) \ {\rm then} \ c \cdot \mu \in \mathcal{M}_{\rm op}(\beta \widetilde{M}) \ {\rm for \ every} \ c \geq 0.$
- $If \ \mu \in \mathcal{M}_{\mathrm{op}}(\beta \widetilde{M}) \text{ and } \lambda \in \mathcal{M}(\beta \widetilde{M}) \text{ satisfies } 0 \leq \lambda \leq \mu, \text{ then } \lambda \in \mathcal{M}_{\mathrm{op}}(\beta \widetilde{M}).$
- If $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ and $E \subseteq \beta \widetilde{M}$ is Borel then $\mu \upharpoonright_E \in \mathcal{M}_{op}(\beta \widetilde{M})$.

The support of a measure

Definition 2.12

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ be positive. Define

$$\mathsf{supp}(\mu) = \left\{ \zeta \in eta \widetilde{M} \; : \; \mu(U) > \mathsf{0} ext{ whenever } U
i \zeta ext{ is open in } eta \widetilde{M}
ight\}$$

and $\operatorname{supp}_{\widetilde{M}}(\mu) = \left\{ (x, y) \in \widetilde{M} : \mu(U) > 0 \text{ whenever } U \ni (x, y) \text{ is open in } \widetilde{M} \right\}.$

The support of a measure

Definition 2.12

Let $\mu \in \mathcal{M}(\beta \widetilde{M})$ be positive. Define

$$\mathsf{supp}(\mu) = \left\{\zeta \in eta \widetilde{M} \; : \; \mu(U) > \mathsf{0} ext{ whenever } U
i \zeta ext{ is open in } eta \widetilde{M}
ight\}$$

and $\operatorname{supp}_{\widetilde{M}}(\mu) = \left\{ (x, y) \in \widetilde{M} : \mu(U) > 0 \text{ whenever } U \ni (x, y) \text{ is open in } \widetilde{M} \right\}.$

For such μ it holds that μ is concentrated on supp (μ) : $\|\mu\| = \mu(\text{supp}(\mu))$, and if μ is concentrated on \widetilde{M} then supp $_{\widetilde{M}}(\mu) = \text{supp}(\mu) \cap \widetilde{M}$.

Convex integrals of molecules

Proposition 2.13 If $\mu \in \mathcal{M}(\beta \widetilde{M})$ then

$$\Phi^*(\mu{\restriction}_{\widetilde{M}}) = \int_{\widetilde{M}} m_{xy} \, \mathrm{d} \mu(x,y) \; ,$$

as a Bochner integral on $\mathcal{F}(M)$.

Convex integrals of molecules

Proposition 2.13 If $\mu \in \mathcal{M}(\beta \widetilde{M})$ then

$$\Phi^*(\mu{\restriction}_{\widetilde{M}}) = \int_{\widetilde{M}} m_{xy} \, \mathrm{d} \mu(x,y)$$

as a Bochner integral on $\mathcal{F}(M)$.

Definition 2.14

We say that $m \in \mathcal{F}(M)$ is a **convex integral of molecules** if $m = \Phi^* \mu$ for some $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ concentrated on \widetilde{M} .

Relationship with convex series of molecules

Proposition 3.1

Every convex series of molecules is a convex integral of molecules.

Relationship with convex series of molecules

Proposition 3.1

Every convex series of molecules is a convex integral of molecules.

Proposition 3.2

If *M* is scattered, then every convex integral of molecules in $\mathcal{F}(M)$ is also a convex series of molecules.

Relationship with convex series of molecules

Proposition 3.1

Every convex series of molecules is a convex integral of molecules.

Proposition 3.2

If *M* is scattered, then every convex integral of molecules in $\mathcal{F}(M)$ is also a convex series of molecules.

Proposition 3.3

Let M = [0, 1] and $\theta \in (0, 1)$. Then there is a convex integral of molecules in $\mathcal{F}(M^{\theta})$ that is not a convex series of molecules.

Majorisable elements

Definition 3.4

Let $m \in \mathcal{F}(M)$.

• We say that *m* is **positive** if $(m, f) \ge 0$ whenever $f \in Lip_0(M)$ satisfies $f \ge 0$.

Majorisable elements

Definition 3.4

Let $m \in \mathcal{F}(M)$.

- We say that *m* is **positive** if $(m, f) \ge 0$ whenever $f \in Lip_0(M)$ satisfies $f \ge 0$.
- **2** We say that $m \in \mathcal{F}(M)$ is **majorisable** if $m = m_1 m_2$, where m_1, m_2 are positive.

Majorisable elements

Definition 3.4

Let $m \in \mathcal{F}(M)$.

() We say that *m* is **positive** if $(m, f) \ge 0$ whenever $f \in Lip_0(M)$ satisfies $f \ge 0$.

2 We say that $m \in \mathcal{F}(M)$ is **majorisable** if $m = m_1 - m_2$, where m_1, m_2 are positive.

Theorem 3.5

Let $m \in \mathcal{F}(M)$. Then *m* is majorisable if and only if it is a convex integral of molecules with a representation $\mu \in \mathcal{M}_{op}(\widetilde{M})$ satisfying

$$\int_{\widetilde{M}} rac{d(x,0)}{d(x,y)} \,\mathrm{d}\mu(x,y) < \infty.$$

Uniformly discrete spaces

Definition 3.6

A metric space *M* is called **uniformly discrete** if there exists r > 0 such that $d(x, y) \ge r$ whenever $x, y \in M, x \ne y$.

Uniformly discrete spaces

Definition 3.6

A metric space *M* is called **uniformly discrete** if there exists r > 0 such that $d(x, y) \ge r$ whenever $x, y \in M, x \ne y$.

Corollary 3.7

If *M* is uniformly discrete and bounded then every element of $\mathcal{F}(M)$ is a convex series of molecules.

Not all free space elements are convex integrals of molecules

Theorem 3.8

Let *M* contain an isometric copy of a subset of \mathbb{R} with positive Lebesgue measure. Then there exists $m \in \mathcal{F}(M)$ such that $\operatorname{supp}(\mu) \cap \widetilde{M} = \emptyset$ whenever $\mu \in \mathcal{M}_{\operatorname{op}}(\beta \widetilde{M})$ represents *m*.

Example 3.9

Let M = [0, 1] and let $C \subseteq M$ be a nowhere dense 'fat Cantor set'. Then

$$[0,1] \setminus C = \bigcup_{n=1}^{\infty} (a_n, b_n),$$

where $(a_n, b_n) \subseteq [0, 1]$ are pairwise disjoint open intervals such that $\sum_{n=1}^{\infty} (b_n - a_n) < 1$.

Example 3.9

Let M = [0, 1] and let $C \subseteq M$ be a nowhere dense 'fat Cantor set'. Then

$$[0,1]\setminus C=\bigcup_{n=1}^\infty(a_n,b_n),$$

where $(a_n, b_n) \subseteq [0, 1]$ are pairwise disjoint open intervals such that $\sum_{n=1}^{\infty} (b_n - a_n) < 1$. Set

$$m = m_{10} - \sum_{n=1}^{\infty} (b_n - a_n) m_{b_n a_n} \in \mathcal{F}([0, 1]).$$

Example 3.9

Let M = [0, 1] and let $C \subseteq M$ be a nowhere dense 'fat Cantor set'. Then

$$[0,1]\setminus C=igcup_{n=1}^\infty(a_n,b_n),$$

where $(a_n, b_n) \subseteq [0, 1]$ are pairwise disjoint open intervals such that $\sum_{n=1}^{\infty} (b_n - a_n) < 1$. Set

$$m = m_{10} - \sum_{n=1}^{\infty} (b_n - a_n) m_{b_n a_n} \in \mathcal{F}([0, 1]).$$

Then supp $(\mu) \cap \widetilde{M} = \emptyset$ whenever $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ represents *m*.

Example 3.9

Let M = [0, 1] and let $C \subseteq M$ be a nowhere dense 'fat Cantor set'. Then

$$[0,1]\setminus C=igcup_{n=1}^\infty(a_n,b_n),$$

where $(a_n, b_n) \subseteq [0, 1]$ are pairwise disjoint open intervals such that $\sum_{n=1}^{\infty} (b_n - a_n) < 1$. Set

$$m = m_{10} - \sum_{n=1}^{\infty} (b_n - a_n) m_{b_n a_n} \in \mathcal{F}([0, 1]).$$

Then supp $(\mu) \cap \widetilde{M} = \emptyset$ whenever $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ represents *m*.

Lemma 3.10

Let $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ represent $\psi \in \operatorname{Lip}_{0}(M)^{*}$ and suppose $\langle \psi, f \rangle = \|\psi\|$ for some $f \in S_{\operatorname{Lip}_{0}(M)}$. Then $\Phi f(\zeta) = 1$ whenever $\zeta \in \operatorname{supp}(\mu)$.

The extreme point conjecture for free spaces

Theorem 4.1

Let $m \in \text{ext } B_{\mathcal{F}(M)}$, and let $\mu \in \mathcal{M}_{\text{op}}(\beta \widetilde{M})$ represent m and satisfy $\mu(\widetilde{M}) > 0$. Then $m \in E$. In particular, this holds if m is a convex integral of molecules.

The extreme point conjecture for free spaces

Theorem 4.1

Let $m \in \operatorname{ext} B_{\mathcal{F}(M)}$, and let $\mu \in \mathcal{M}_{op}(\beta \widetilde{M})$ represent *m* and satisfy $\mu(\widetilde{M}) > 0$. Then $m \in E$. In particular, this holds if m is a convex integral of molecules.

Lemma 4.2 (Aliaga 22)

Let $m \in \operatorname{ext} B_{\mathcal{F}(M)}$ and let $\mu \in \mathcal{M}_{\operatorname{op}}(\beta \widetilde{M})$ represent m. If $\lambda \in \mathcal{M}(\beta \widetilde{M})$ is such that $0 \leq \lambda \leq \mu$ and $\Phi^*\lambda \in \mathcal{F}(M)$, then $\Phi^*\lambda = \|\lambda\| \cdot m$.

The extreme point conjecture for free spaces

Theorem 4.1

Let $m \in \operatorname{ext} B_{\mathcal{F}(M)}$, and let $\mu \in \mathcal{M}_{op}(\beta M)$ represent m and satisfy $\mu(M) > 0$. Then $m \in E$. In particular, this holds if m is a convex integral of molecules.

Lemma 4.2 (Aliaga 22)

Let $m \in \operatorname{ext} B_{\mathcal{F}(M)}$ and let $\mu \in \mathcal{M}_{\operatorname{op}}(\beta \widetilde{M})$ represent m. If $\lambda \in \mathcal{M}(\beta \widetilde{M})$ is such that $0 \leq \lambda \leq \mu$ and $\Phi^*\lambda \in \mathcal{F}(M)$, then $\Phi^*\lambda = \|\lambda\| \cdot m$.

Corollarv 4.3

If an extreme point of $B_{\mathcal{F}(M)}$ is majorisable, then it is an elementary molecule. E.g. if M is uniformly discrete and bounded then ext $B_{\mathcal{F}(M)} \subseteq E$.