

tales

Norming

Tommaso Russo Department of Mathematics Universität Innsbruck tommaso.russo.math@gmail.com

XXII Lluís Santaló School 2023, Linear and Nonlinear Analysis in Banach spaces Santander, Spain July 17–21, 2023

Once upon a time in Linear Algebra

Every Banach space \mathcal{X} has a linear basis $\{v_{\alpha}\}_{\alpha\in\Gamma}$.

- Even when \mathcal{X} is separable, the index set Γ is uncountable.
 - So, linear bases don't generalise complete orthonormal systems.
- Moreover, the linear functionals $\sum c_{\alpha}v_{\alpha} \mapsto c_{\alpha}$ are never continuous.
- A sequence (e_n)[∞]_{n=1} is a Schauder basis if for all x ∈ X there are unique scalars (x_n)[∞]_{n=1} with

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 (the series converges in \mathcal{X}).

• The coordinate functionals $\varphi_n \colon \sum x_n e_n \mapsto x_n$ are continuous.

Two drawbacks:

- Schauder bases can only exist in separable spaces.
- **Enflo** ('73). Not every separable Banach space has a Schauder basis.

- Every Banach space \mathcal{X} has a linear basis $\{v_{\alpha}\}_{\alpha\in\Gamma}$.
- Even when \mathcal{X} is separable, the index set Γ is uncountable.
 - So, linear bases don't generalise complete orthonormal systems.
- Moreover, the linear functionals $\sum c_{\alpha}v_{\alpha} \mapsto c_{\alpha}$ are never continuous.
- A sequence (e_n)[∞]_{n=1} is a Schauder basis if for all x ∈ X there are unique scalars (x_n)[∞]_{n=1} with

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 (the series converges in \mathcal{X}).

• The **coordinate functionals** $\varphi_n \colon \sum x_n e_n \mapsto x_n$ are continuous.

Two drawbacks:

- Schauder bases can only exist in separable spaces.
- **Enflo** ('73). Not every separable Banach space has a Schauder basis.

- Every Banach space \mathcal{X} has a linear basis $\{v_{\alpha}\}_{\alpha\in\Gamma}$.
- Even when \mathcal{X} is separable, the index set Γ is uncountable.
 - So, linear bases don't generalise complete orthonormal systems.
- ▶ Moreover, the linear functionals $\sum c_{\alpha}v_{\alpha} \mapsto c_{\alpha}$ are never continuous.
- A sequence (e_n)[∞]_{n=1} is a Schauder basis if for all x ∈ X there are unique scalars (x_n)[∞]_{n=1} with

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 (the series converges in \mathcal{X}).

- The **coordinate functionals** φ_n : $\sum x_n e_n \mapsto x_n$ are continuous.
- Two drawbacks:
 - Schauder bases can only exist in separable spaces.
 - Enflo ('73). Not every separable Banach space has a Schauder basis.

- Every Banach space \mathcal{X} has a linear basis $\{v_{\alpha}\}_{\alpha\in\Gamma}$.
- Even when \mathcal{X} is separable, the index set Γ is uncountable.
 - So, linear bases don't generalise complete orthonormal systems.
- ▶ Moreover, the linear functionals $\sum c_{\alpha}v_{\alpha} \mapsto c_{\alpha}$ are never continuous.
- A sequence (e_n)[∞]_{n=1} is a Schauder basis if for all x ∈ X there are unique scalars (x_n)[∞]_{n=1} with

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 (the series converges in \mathcal{X}).

- The **coordinate functionals** $\varphi_n \colon \sum x_n e_n \mapsto x_n$ are continuous.
- Two drawbacks:
 - Schauder bases can only exist in separable spaces.
 - **Enflo ('73).** Not every separable Banach space has a Schauder basis.

- Every Banach space \mathcal{X} has a linear basis $\{v_{\alpha}\}_{\alpha\in\Gamma}$.
- Even when \mathcal{X} is separable, the index set Γ is uncountable.
 - So, linear bases don't generalise complete orthonormal systems.
- ▶ Moreover, the linear functionals $\sum c_{\alpha}v_{\alpha} \mapsto c_{\alpha}$ are never continuous.
- A sequence (e_n)[∞]_{n=1} is a Schauder basis if for all x ∈ X there are unique scalars (x_n)[∞]_{n=1} with

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 (the series converges in \mathcal{X}).

• The coordinate functionals $\varphi_n \colon \sum x_n e_n \mapsto x_n$ are continuous.

Two drawbacks:

- Schauder bases can only exist in separable spaces.
- Enflo ('73). Not every separable Banach space has a Schauder basis.

- Every Banach space \mathcal{X} has a linear basis $\{v_{\alpha}\}_{\alpha\in\Gamma}$.
- Even when \mathcal{X} is separable, the index set Γ is uncountable.
 - So, linear bases don't generalise complete orthonormal systems.
- ▶ Moreover, the linear functionals $\sum c_{\alpha}v_{\alpha} \mapsto c_{\alpha}$ are never continuous.
- A sequence (e_n)[∞]_{n=1} is a Schauder basis if for all x ∈ X there are unique scalars (x_n)[∞]_{n=1} with

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 (the series converges in \mathcal{X}).

- The coordinate functionals φ_n : $\sum x_n e_n \mapsto x_n$ are continuous.
- Two drawbacks:
 - Schauder bases can only exist in separable spaces.
 - **Enflo ('73).** Not every separable Banach space has a Schauder basis.

- Every Banach space \mathcal{X} has a linear basis $\{v_{\alpha}\}_{\alpha\in\Gamma}$.
- Even when \mathcal{X} is separable, the index set Γ is uncountable.
 - So, linear bases don't generalise complete orthonormal systems.
- ▶ Moreover, the linear functionals $\sum c_{\alpha}v_{\alpha} \mapsto c_{\alpha}$ are never continuous.
- A sequence (e_n)[∞]_{n=1} is a Schauder basis if for all x ∈ X there are unique scalars (x_n)[∞]_{n=1} with

$$x = \sum_{n=1}^{\infty} x_n e_n$$
 (the series converges in \mathcal{X}).

- The coordinate functionals $\varphi_n \colon \sum x_n e_n \mapsto x_n$ are continuous.
- Two drawbacks:
 - Schauder bases can only exist in separable spaces.
 - **Enflo ('73).** Not every separable Banach space has a Schauder basis.

If $(e_n)_{n=1}^{\infty}$ is a Schauder basis and $(\varphi_n)_{n=1}^{\infty}$ are the coordinate functionals: (i) $\langle \varphi_k, e_n \rangle = \delta_{k,n}$, (ii) $\overline{\operatorname{span}}\{e_n\} = \mathcal{X}$, (iii) $\overline{\operatorname{span}}^{w^*}\{\varphi_n\} = \mathcal{X}^*$.

• Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!

Advantages:

- Markushevich ('43). Every separable Banach space has an M-basis.
- The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

A system $\{e_n; \varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a Markushevich basis (M-basis) if: (i) $\langle \varphi_k, e_n \rangle = \delta_{k,n}$, (ii) $\overline{\operatorname{span}}\{e_n\} = \mathcal{X}$, (iii) $\overline{\operatorname{span}}^w^* \{\varphi_n\} = \mathcal{X}^*$.

• Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!

Advantages:

- Markushevich ('43). Every separable Banach space has an M-basis.
- The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

A system $\{e_n; \varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a Markushevich basis (M-basis) if:

- (i) $\langle \varphi_k, e_n \rangle = \delta_{k,n}$,
- (ii) $\overline{\operatorname{span}}\{e_n\} = \mathcal{X},$
- (iii) $\overline{\operatorname{span}}^{w^*} \{ \varphi_n \} = \mathcal{X}^*.$

• Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!

Advantages:

- Markushevich ('43). Every separable Banach space has an M-basis.
- The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

A system $\{e_n; \varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a Markushevich basis (M-basis) if:

- (i) $\langle \varphi_k, e_n \rangle = \delta_{k,n}$,
- (ii) $\overline{\operatorname{span}}\{e_n\} = \mathcal{X},$
- (iii) $\overline{\operatorname{span}}^{w^*} \{ \varphi_n \} = \mathcal{X}^*.$
 - Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!
 - Advantages:
 - Markushevich ('43). Every separable Banach space has an M-basis.

The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

A system $\{e_n; \varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a Markushevich basis (M-basis) if:

- (i) $\langle \varphi_k, e_n \rangle = \delta_{k,n}$,
- (ii) $\overline{\operatorname{span}}\{e_n\} = \mathcal{X},$
- (iii) $\overline{\operatorname{span}}^{w^*} \{ \varphi_n \} = \mathcal{X}^*.$
 - ▶ Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!
 - Advantages:
 - Markushevich ('43). Every separable Banach space has an M-basis.
 - The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

A system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a Markushevich basis (M-basis) if:

- (i) $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\beta, \alpha}$,
- (ii) $\overline{\operatorname{span}}\{e_{\alpha}\} = \mathcal{X},$
- (iii) $\overline{\operatorname{span}}^{w^*} \{ \varphi_{\alpha} \} = \mathcal{X}^*.$
 - Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!
 - Advantages:
 - Markushevich ('43). Every separable Banach space has an M-basis.
 - The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

A system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a Markushevich basis (M-basis) if:

- (i) $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\beta, \alpha}$,
- (ii) $\overline{\operatorname{span}}\{e_{\alpha}\} = \mathcal{X},$
- (iii) $\overline{\operatorname{span}}^{w^*} \{ \varphi_{\alpha} \} = \mathcal{X}^*.$
 - Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!
 - Advantages:
 - Markushevich ('43). Every separable Banach space has an M-basis.
 - The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

A system $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma} \subseteq \mathcal{X} \times \mathcal{X}^*$ is a Markushevich basis (M-basis) if:

- (i) $\langle \varphi_{\beta}, e_{\alpha} \rangle = \delta_{\beta, \alpha}$,
- (ii) $\overline{\operatorname{span}}\{e_{\alpha}\} = \mathcal{X},$
- (iii) $\overline{\operatorname{span}}^{w^*} \{ \varphi_{\alpha} \} = \mathcal{X}^*.$
 - Drawback: $\sum_{n=1}^{\infty} \langle \varphi_n, x \rangle e_n$ might not converge!
 - Advantages:
 - Markushevich ('43). Every separable Banach space has an M-basis.
 - The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system $\{t \mapsto e^{ikt}\}_{k \in \mathbb{Z}}$ is not a Schauder basis of $\mathcal{C}(\mathbb{T})$ (or $L^1(\mathbb{T})$), but it is an M-basis.

We actually have more:

- ▶ If \mathcal{X}^* is separable, \mathcal{X} admits an M-basis with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$.
- ▶ Every separable Banach space, for every $\varepsilon > 0$, admits an M-basis $\{e_n; \varphi_n\}_{n=1}^{\infty}$ with $\|e_n\| \cdot \|\varphi_n\| \leq 1 + \varepsilon$.
- Every separable Banach space admits a 1-norming M-basis.
- A subspace $\mathcal Z$ of $\mathcal X^*$ is $\lambda extsf{-norming}\;(0<\lambda\leqslant 1)$ if

 $\lambda \|\mathbf{x}\| \leqslant \sup\{|\langle \varphi, \mathbf{x}\rangle| \colon \varphi \in \mathcal{Z}, \, \|\varphi\| \leqslant 1\}.$

Plainly, \mathcal{X}^* is 1-norming, by the Hahn–Banach theorem.

Definition. An M-basis $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is a λ -norming subspace, namely if

 $\lambda \|\mathbf{x}\| \leq \sup\{|\langle \varphi, \mathbf{x}\rangle| \colon \varphi \in \operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}, \, \|\varphi\| \leq 1\}.$

We actually have more:

- ▶ If \mathcal{X}^* is separable, \mathcal{X} admits an M-basis with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$.
- ▶ Every separable Banach space, for every $\varepsilon > 0$, admits an M-basis $\{e_n; \varphi_n\}_{n=1}^{\infty}$ with $\|e_n\| \cdot \|\varphi_n\| \leq 1 + \varepsilon$.

Every separable Banach space admits a 1-norming M-basis. A subspace \mathcal{Z} of \mathcal{X}^* is λ -norming $(0 < \lambda < 1)$ if

 $\lambda \|\mathbf{x}\| \leqslant \sup\{|\langle \varphi, \mathbf{x} \rangle| \colon \varphi \in \mathcal{Z}, \, \|\varphi\| \leqslant 1\}.$

Plainly, \mathcal{X}^* is 1-norming, by the Hahn–Banach theorem.

Definition. An M-basis $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is a λ -norming subspace, namely if

 $\lambda \|x\| \leq \sup\{|\langle \varphi, x\rangle| \colon \varphi \in \operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}, \, \|\varphi\| \leq 1\}.$

We actually have more:

- ▶ If \mathcal{X}^* is separable, \mathcal{X} admits an M-basis with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$.
- ▶ Every separable Banach space, for every $\varepsilon > 0$, admits an M-basis $\{e_n; \varphi_n\}_{n=1}^{\infty}$ with $||e_n|| \cdot ||\varphi_n|| \leq 1 + \varepsilon$.
- Every separable Banach space admits a 1-norming M-basis.

A subspace $\mathcal Z$ of $\mathcal X^*$ is λ -norming $(0 < \lambda \leqslant 1)$ if

 $\lambda \|\mathbf{x}\| \leq \sup\{|\langle \varphi, \mathbf{x} \rangle| \colon \varphi \in \mathcal{Z}, \, \|\varphi\| \leq 1\}.$

Plainly, \mathcal{X}^* is 1-norming, by the Hahn–Banach theorem.

Definition. An M-basis $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is a λ -norming subspace, namely if

 $\lambda \|x\| \leqslant \sup\{ |\langle \varphi, x \rangle| \colon \varphi \in \operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}, \, \|\varphi\| \leqslant 1 \}.$

We actually have more:

- ▶ If \mathcal{X}^* is separable, \mathcal{X} admits an M-basis with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$.
- ▶ Every separable Banach space, for every $\varepsilon > 0$, admits an M-basis $\{e_n; \varphi_n\}_{n=1}^{\infty}$ with $||e_n|| \cdot ||\varphi_n|| \leq 1 + \varepsilon$.
- Every separable Banach space admits a 1-norming M-basis.
- A subspace \mathcal{Z} of \mathcal{X}^* is λ -norming $(0 < \lambda \leq 1)$ if

$$\lambda \|\mathbf{x}\| \leqslant \sup\{|\langle \varphi, \mathbf{x}\rangle| \colon \varphi \in \mathcal{Z}, \, \|\varphi\| \leqslant 1\}.$$

Plainly, \mathcal{X}^* is 1-norming, by the Hahn–Banach theorem.

Definition. An M-basis $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is a λ -norming subspace, namely if

 $\lambda \|\mathbf{x}\| \leq \sup\{|\langle \varphi, \mathbf{x} \rangle| \colon \varphi \in \operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}, \, \|\varphi\| \leq 1\}.$

We actually have more:

- ▶ If \mathcal{X}^* is separable, \mathcal{X} admits an M-basis with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$.
- ▶ Every separable Banach space, for every $\varepsilon > 0$, admits an M-basis $\{e_n; \varphi_n\}_{n=1}^{\infty}$ with $||e_n|| \cdot ||\varphi_n|| \leq 1 + \varepsilon$.
- Every separable Banach space admits a 1-norming M-basis.
- A subspace \mathcal{Z} of \mathcal{X}^* is λ -norming $(0 < \lambda \leq 1)$ if

$$\lambda \|\mathbf{x}\| \leqslant \sup\{|\langle \varphi, \mathbf{x}\rangle| \colon \varphi \in \mathcal{Z}, \, \|\varphi\| \leqslant 1\}.$$

Plainly, \mathcal{X}^* is 1-norming, by the Hahn–Banach theorem.

Definition. An M-basis $\{e_{\alpha}; \varphi_{\alpha}\}_{\alpha \in \Gamma}$ is λ -norming $(0 < \lambda \leq 1)$ if $\operatorname{span}\{\varphi_{\alpha}\}_{\alpha \in \Gamma}$ is a λ -norming subspace, namely if

 $\lambda \| \mathbf{x} \| \leqslant \sup \{ |\langle \varphi, \mathbf{x} \rangle| \colon \varphi \in \operatorname{span} \{ \varphi_{\alpha} \}_{\alpha \in \Gamma}, \, \| \varphi \| \leqslant 1 \}.$

Once upon a time in America

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Norming tales

John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.

- Amir–Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir-Lindenstrauss ('68). WCG spaces have a PRI.
 - **Troyanski ('71).** WCG spaces have a LUR norm.
- - The canonical basis of $\ell_1(\Gamma)$ is 1-norming.
 - John–Zizler ('74). Does every WCG space have a norming M-basis?
- More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

Theorem (Hájek, Advances '19)

- John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.
- Amir–Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir–Lindenstrauss ('68). WCG spaces have a PRI.
 - Troyanski ('71). WCG spaces have a LUR norm.
- - The canonical basis of $\ell_1(\Gamma)$ is 1-norming.
 - John–Zizler ('74). Does every WCG space have a norming M-basis?
- More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

- John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.
- ▶ Amir-Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir-Lindenstrauss ('68). WCG spaces have a PRI.
 - **Troyanski ('71).** WCG spaces have a LUR norm.
- - The canonical basis of *l*₁(Γ) is 1-norming.
 - John–Zizler ('74). Does every WCG space have a norming M-basis?
- More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

- John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.
- ▶ Amir-Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir-Lindenstrauss ('68). WCG spaces have a PRI.
 - **Troyanski ('71).** WCG spaces have a LUR norm.
- - The canonical basis of $\ell_1(\Gamma)$ is 1-norming
 - John–Zizler ('74). Does every WCG space have a norming M-basis?
- More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

- John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.
- ▶ Amir-Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir-Lindenstrauss ('68). WCG spaces have a PRI.
 - **Troyanski ('71).** WCG spaces have a LUR norm.
- - The canonical basis of $\ell_1(\Gamma)$ is 1-norming.
 - John–Zizler ('74). Does every WCG space have a norming M-basis?
- More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

- John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.
- ▶ Amir-Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir-Lindenstrauss ('68). WCG spaces have a PRI.
 - Troyanski ('71). WCG spaces have a LUR norm.
- - The canonical basis of $\ell_1(\Gamma)$ is 1-norming.
 - John-Zizler ('74). Does every WCG space have a norming M-basis?

More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

Theorem (Hájek, Advances '19)

- John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.
- ▶ Amir-Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir-Lindenstrauss ('68). WCG spaces have a PRI.
 - Troyanski ('71). WCG spaces have a LUR norm.
- - The canonical basis of $\ell_1(\Gamma)$ is 1-norming.
 - John–Zizler ('74). Does every WCG space have a norming M-basis?
- More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

- John–Zizler ('74). Every Banach space with norming M-basis has a PRI and a LUR norm.
- ▶ Amir-Lindenstrauss ('68). A Banach space X is WCG if it admits a weakly compact subset with dense linear span.
 - Amir-Lindenstrauss ('68). WCG spaces have a PRI.
 - Troyanski ('71). WCG spaces have a LUR norm.
- - The canonical basis of $\ell_1(\Gamma)$ is 1-norming.
 - John–Zizler ('74). Does every WCG space have a norming M-basis?
- More recent results: WCG spaces, or spaces with norming M-basis, are Plichko. And Plichko spaces have a PRI and a LUR norm.

- ▶ John-Zizler ('74). If a Banach space (X, ||·||) has a 1-norming M-basis and ||·|| is Fréchet differentiable, then X is WCG.
- X has an M-basis {e_α, φ_α}_{α∈Γ} with span{φ_α} = X*, iff X is Asplund and WCG.
 - If a Banach space has a Fréchet norm, then it is Asplund.
- ► Godefroy (~'90). Let X be an Asplund space with norming M-basis. Is X WCG?

Theorem (Hájek, R., Somaglia, Todorčević, Advances '21)

- \blacktriangleright $\mathcal X$ is a subspace of an Asplund $\mathcal C(\mathcal K)$ space, which is not WCG.
- **Problem.** Is there a $C(\mathcal{K})$ counterexample?
 - (The same) Problem. Let K be a scattered compact space such that C(K) space has a norming M-basis. Is K Eberlein?

- ▶ John–Zizler ('74). If a Banach space (X, ||·||) has a 1-norming M-basis and ||·|| is Fréchet differentiable, then X is WCG.
- ▶ \mathcal{X} has an M-basis $\{e_{\alpha}, \varphi_{\alpha}\}_{\alpha \in \Gamma}$ with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$, iff \mathcal{X} is Asplund and WCG.

If a Banach space has a Fréchet norm, then it is Asplund.

► Godefroy (~'90). Let X be an Asplund space with norming M-basis. Is X WCG?

Theorem (Hájek, R., Somaglia, Todorčević, Advances '21)

- \blacktriangleright $\mathcal X$ is a subspace of an Asplund $\mathcal C(\mathcal K)$ space, which is not WCG.
- **Problem.** Is there a $C(\mathcal{K})$ counterexample?
 - ► (The same) Problem. Let K be a scattered compact space such that C(K) space has a norming M-basis. Is K Eberlein?

- 8
- ▶ John-Zizler ('74). If a Banach space (X, ||·||) has a 1-norming M-basis and ||·|| is Fréchet differentiable, then X is WCG.
- ▶ \mathcal{X} has an M-basis $\{e_{\alpha}, \varphi_{\alpha}\}_{\alpha \in \Gamma}$ with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$, iff \mathcal{X} is Asplund and WCG.
 - If a Banach space has a Fréchet norm, then it is Asplund.
- ► Godefroy (~'90). Let X be an Asplund space with norming M-basis. Is X WCG?

Theorem (Hájek, R., Somaglia, Todorčević, Advances '21)

- $\blacktriangleright \mathcal{X}$ is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ space, which is not WCG.
- **Problem.** Is there a $C(\mathcal{K})$ counterexample?
 - ► (The same) Problem. Let K be a scattered compact space such that C(K) space has a norming M-basis. Is K Eberlein?

- 8
- ▶ John-Zizler ('74). If a Banach space (X, ||·||) has a 1-norming M-basis and ||·|| is Fréchet differentiable, then X is WCG.
- ▶ \mathcal{X} has an M-basis $\{e_{\alpha}, \varphi_{\alpha}\}_{\alpha \in \Gamma}$ with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$, iff \mathcal{X} is Asplund and WCG.
 - If a Banach space has a Fréchet norm, then it is Asplund.
- ► Godefroy (~'90). Let X be an Asplund space with norming M-basis. Is X WCG?

Theorem (Hájek, R., Somaglia, Todorčević, Advances '21)

- \succ \mathcal{X} is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ space, which is not WCG.
- **Problem.** Is there a $C(\mathcal{K})$ counterexample?
 - ► (The same) Problem. Let K be a scattered compact space such that C(K) space has a norming M-basis. Is K Eberlein?

- 8
- ▶ John-Zizler ('74). If a Banach space (X, ||·||) has a 1-norming M-basis and ||·|| is Fréchet differentiable, then X is WCG.
- ▶ \mathcal{X} has an M-basis $\{e_{\alpha}, \varphi_{\alpha}\}_{\alpha \in \Gamma}$ with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$, iff \mathcal{X} is Asplund and WCG.
 - If a Banach space has a Fréchet norm, then it is Asplund.
- ► Godefroy (~'90). Let X be an Asplund space with norming M-basis. Is X WCG?

Theorem (Hájek, R., Somaglia, Todorčević, Advances '21)

- $\blacktriangleright~\mathcal{X}$ is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ space, which is not WCG.
 - **Problem.** Is there a $C(\mathcal{K})$ counterexample?
 - (The same) Problem. Let K be a scattered compact space such that C(K) space has a norming M-basis. Is K Eberlein?

- 8
- ▶ John-Zizler ('74). If a Banach space (X, ||·||) has a 1-norming M-basis and ||·|| is Fréchet differentiable, then X is WCG.
- ▶ \mathcal{X} has an M-basis $\{e_{\alpha}, \varphi_{\alpha}\}_{\alpha \in \Gamma}$ with $\overline{\operatorname{span}}\{\varphi_{\alpha}\} = \mathcal{X}^*$, iff \mathcal{X} is Asplund and WCG.
 - If a Banach space has a Fréchet norm, then it is Asplund.
- ► Godefroy (~'90). Let X be an Asplund space with norming M-basis. Is X WCG?

Theorem (Hájek, R., Somaglia, Todorčević, Advances '21)

- \blacktriangleright \mathcal{X} is a subspace of an Asplund $\mathcal{C}(\mathcal{K})$ space, which is not WCG.
- **Problem.** Is there a $C(\mathcal{K})$ counterexample?
 - ► (The same) Problem. Let K be a scattered compact space such that C(K) space has a norming M-basis. Is K Eberlein?

- Problem. Assume that a C(K) space has a norming M-basis. Must K be Valdivia?
- Deville–Godefroy ('93). A Valdivia compact space K is Corson iff it does not contain [0, ω₁].
- Alster ('79). A scattered Corson compact is Eberlein.
- ▶ **Problem.** Let \mathcal{K} be a Valdivia compact such that $[0, \omega_1] \subseteq \mathcal{K}$. Does it follow that $\mathcal{C}(\mathcal{K})$ has <u>no</u> norming M-basis?
- ► If both answers are YES, there is no C(K) counterexample to Godefroy's problem.
 - \mathcal{K} must be Valdivia. Distinguish two cases, if $[0, \omega_1] \subseteq \mathcal{K}$, or not.
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- READ BELOW (AND FORGET THE ABOVE).
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

- Problem. Assume that a C(K) space has a norming M-basis. Must K be Valdivia?
- Deville–Godefroy ('93). A Valdivia compact space K is Corson iff it does not contain [0, ω₁].
- > Alster ('79). A scattered Corson compact is Eberlein.
- ▶ **Problem.** Let \mathcal{K} be a Valdivia compact such that $[0, \omega_1] \subseteq \mathcal{K}$. Does it follow that $\mathcal{C}(\mathcal{K})$ has <u>no</u> norming M-basis?
- ► If both answers are YES, there is no C(K) counterexample to Godefroy's problem.
 - \blacktriangleright \mathcal{K} must be Valdivia. Distinguish two cases, if $[0, \omega_1] \subseteq \mathcal{K}$, or not.
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- ▶ READ BELOW (AND FORGET THE ABOVE).
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

- Problem. Assume that a C(K) space has a norming M-basis. Must K be Valdivia?
- Deville–Godefroy ('93). A Valdivia compact space K is Corson iff it does not contain [0, ω₁].
- > Alster ('79). A scattered Corson compact is Eberlein.
- ▶ **Problem.** Let \mathcal{K} be a Valdivia compact such that $[0, \omega_1] \subseteq \mathcal{K}$. Does it follow that $\mathcal{C}(\mathcal{K})$ has <u>no</u> norming M-basis?
- ► If both answers are YES, there is no C(K) counterexample to Godefroy's problem.
 - \blacktriangleright \mathcal{K} must be Valdivia. Distinguish two cases, if $[0, \omega_1] \subseteq \mathcal{K}$, or not.
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- ▶ READ BELOW (AND FORGET THE ABOVE).
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

- Problem. Assume that a C(K) space has a norming M-basis. Must K be Valdivia?
- Deville–Godefroy ('93). A Valdivia compact space *K* is Corson iff it does not contain [0, ω₁].
- > Alster ('79). A scattered Corson compact is Eberlein.
- ▶ **Problem.** Let \mathcal{K} be a Valdivia compact such that $[0, \omega_1] \subseteq \mathcal{K}$. Does it follow that $\mathcal{C}(\mathcal{K})$ has <u>no</u> norming M-basis?
- ► If both answers are YES, there is no C(K) counterexample to Godefroy's problem.
 - ▶ \mathcal{K} must be Valdivia. Distinguish two cases, if $[0, \omega_1] \subseteq \mathcal{K}$, or not.
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- ▶ READ BELOW (AND FORGET THE ABOVE).
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

- Problem. Assume that a C(K) space has a norming M-basis. Must K be Valdivia?
- Deville–Godefroy ('93). A Valdivia compact space *K* is Corson iff it does not contain [0, ω₁].
- > Alster ('79). A scattered Corson compact is Eberlein.
- ▶ **Problem.** Let \mathcal{K} be a Valdivia compact such that $[0, \omega_1] \subseteq \mathcal{K}$. Does it follow that $\mathcal{C}(\mathcal{K})$ has <u>no</u> norming M-basis?
- ► If both answers are YES, there is no C(K) counterexample to Godefroy's problem.
 - ▶ \mathcal{K} must be Valdivia. Distinguish two cases, if $[0, \omega_1] \subseteq \mathcal{K}$, or not.
- ▶ Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- ▶ READ BELOW (AND FORGET THE ABOVE).
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

- Problem. Assume that a C(K) space has a norming M-basis. Must K be Valdivia?
- Deville–Godefroy ('93). A Valdivia compact space K is Corson iff it does not contain [0, ω₁].
- > Alster ('79). A scattered Corson compact is Eberlein.
- ▶ **Problem.** Let \mathcal{K} be a Valdivia compact such that $[0, \omega_1] \subseteq \mathcal{K}$. Does it follow that $\mathcal{C}(\mathcal{K})$ has <u>no</u> norming M-basis?
- ► If both answers are YES, there is no C(K) counterexample to Godefroy's problem.
 - \triangleright \mathcal{K} must be Valdivia. Distinguish two cases, if $[0, \omega_1] \subseteq \mathcal{K}$, or not.
- ▶ Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- **READ BELOW (AND FORGET THE ABOVE).**
- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

- Problem. Assume that a C(K) space has a norming M-basis. Must K be Valdivia?
- Deville–Godefroy ('93). A Valdivia compact space K is Corson iff it does not contain [0, ω₁].
- > Alster ('79). A scattered Corson compact is Eberlein.
- ▶ **Problem.** Let \mathcal{K} be a Valdivia compact such that $[0, \omega_1] \subseteq \mathcal{K}$. Does it follow that $\mathcal{C}(\mathcal{K})$ has <u>no</u> norming M-basis?
- ► If both answers are YES, there is no C(K) counterexample to Godefroy's problem.
 - ▶ \mathcal{K} must be Valdivia. Distinguish two cases, if $[0, \omega_1] \subseteq \mathcal{K}$, or not.
- ▶ Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- **READ BELOW (AND FORGET THE ABOVE).**
- ▶ Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

Back to the future

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Norming tales

• Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.

Theorem (R. and Somaglia, '23+)

 $C[0, \omega_1]$ embeds in no Banach space with a norming M-basis.

- So if [0,ω₁] is continuous image of K, C(K) has no norming M-basis.
 - This does <u>not</u> solve the second problem from the previous slide!
- If K = T is a tree (with the coarse wedge topology), then: T scattered and C(T) with norming M-basis implies T Eberlein.
 - Some topological results on (scattered) trees with the coarse wedge topology.

- Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$
- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.

Theorem (R. and Somaglia, '23+)

 $C[0, \omega_1]$ embeds in no Banach space with a norming M-basis.

- So if [0,ω₁] is continuous image of K, C(K) has no norming M-basis.
 - This does <u>not</u> solve the second problem from the previous slide!
- If K = T is a tree (with the coarse wedge topology), then: T scattered and C(T) with norming M-basis implies T Eberlein.
 - Some topological results on (scattered) trees with the coarse wedge topology.

▶ Well, maybe you should consider the case $\mathcal{K} = [0, \omega_1]...$

Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.

Theorem (R. and Somaglia, '23+)

 $C[0,\omega_1]$ embeds in no Banach space with a norming M-basis.

- So if [0, ω₁] is continuous image of K, C(K) has no norming M-basis.
 - This does <u>not</u> solve the second problem from the previous slide!
- If K = T is a tree (with the coarse wedge topology), then: T scattered and C(T) with norming M-basis implies T Eberlein.
 - Some topological results on (scattered) trees with the coarse wedge topology.

Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.

Theorem (R. and Somaglia, '23+)

 $C[0, \omega_1]$ embeds in no Banach space with a norming M-basis.

- ▶ So if $[0, \omega_1]$ is continuous image of \mathcal{K} , $\mathcal{C}(\mathcal{K})$ has no norming M-basis.
 - This does <u>not</u> solve the second problem from the previous slide!
- If K = T is a tree (with the coarse wedge topology), then: T scattered and C(T) with norming M-basis implies T Eberlein.
 - Some topological results on (scattered) trees with the coarse wedge topology.

▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.

Theorem (R. and Somaglia, '23+)

 $C[0, \omega_1]$ embeds in no Banach space with a norming M-basis.

- ▶ So if $[0, \omega_1]$ is continuous image of \mathcal{K} , $\mathcal{C}(\mathcal{K})$ has no norming M-basis.
 - This does <u>not</u> solve the second problem from the previous slide!
- If K = T is a tree (with the coarse wedge topology), then: T scattered and C(T) with norming M-basis implies T Eberlein.
 - Some topological results on (scattered) trees with the coarse wedge topology.

- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.
- R.-Somaglia ('23+). C[0, ω₁] does not embed in a Banach space with norming M-basis.
- Are they actually different results?

Problem

- Vanderwerff–Whitfield–Zizler ('94). Yes, if y is WCG (WLD).
- \blacktriangleright ℓ_{∞} does not embed in a space with norming M-basis (no LUR).
- **Kubiś ('07).** The analogue for Plichko spaces has negative answer.
- Problem, Kalenda ('00). Do all subspaces of *l*₁(Γ) have a norming M-bases? Are they Plichko?

- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.
- R.-Somaglia ('23+). C[0, ω₁] does not embed in a Banach space with norming M-basis.
- Are they actually different results?

Problem

- ► Vanderwerff–Whitfield–Zizler ('94). Yes, if *Y* is WCG (WLD).
- > ℓ_{∞} does not embed in a space with norming M-basis (no LUR).
- **Kubiś ('07).** The analogue for Plichko spaces has negative answer.
- Problem, Kalenda ('00). Do all subspaces of *l*₁(Γ) have a norming M-bases? Are they Plichko?

- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.
- R.-Somaglia ('23+). C[0, ω₁] does not embed in a Banach space with norming M-basis.
- Are they actually different results?

Problem

- ► Vanderwerff–Whitfield–Zizler ('94). Yes, if *Y* is WCG (WLD).
- ℓ_{∞} does not embed in a space with norming M-basis (no LUR).
- **Kubiś ('07).** The analogue for Plichko spaces has negative answer.
- Problem, Kalenda ('00). Do all subspaces of *l*₁(Γ) have a norming M-bases? Are they Plichko?

- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.
- R.-Somaglia ('23+). C[0, ω₁] does not embed in a Banach space with norming M-basis.
- Are they actually different results?

Problem

- ► Vanderwerff–Whitfield–Zizler ('94). Yes, if *Y* is WCG (WLD).
- \blacktriangleright ℓ_{∞} does not embed in a space with norming M-basis (no LUR).
- Kubiś ('07). The analogue for Plichko spaces has negative answer.
- Problem, Kalenda ('00). Do all subspaces of *l*₁(Γ) have a norming M-bases? Are they Plichko?

- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.
- R.-Somaglia ('23+). C[0, ω₁] does not embed in a Banach space with norming M-basis.
- Are they actually different results?

Problem

- ► Vanderwerff–Whitfield–Zizler ('94). Yes, if *Y* is WCG (WLD).
- \blacktriangleright ℓ_∞ does not embed in a space with norming M-basis (no LUR).
- **Kubiś ('07).** The analogue for Plichko spaces has negative answer.
- Problem, Kalenda ('00). Do all subspaces of *l*₁(Γ) have a norming M-bases? Are they Plichko?

- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.
- R.-Somaglia ('23+). C[0, ω₁] does not embed in a Banach space with norming M-basis.
- Are they actually different results?

Problem

Let $\mathcal X$ be a Banach space with norming M-basis and $\mathcal Y$ be a subspace of $\mathcal X.$ Must $\mathcal Y$ have a norming M-basis?

- ► Vanderwerff–Whitfield–Zizler ('94). Yes, if *Y* is WCG (WLD).
- \blacktriangleright ℓ_∞ does not embed in a space with norming M-basis (no LUR).
- **Kubiś ('07).** The analogue for Plichko spaces has negative answer.

Problem, Kalenda ('00). Do all subspaces of *l*₁(Γ) have a norming M-bases? Are they Plichko?

- ▶ Alexandrov–Plichko ('06). $C[0, \omega_1]$ admits no norming M-basis.
- R.-Somaglia ('23+). C[0, ω₁] does not embed in a Banach space with norming M-basis.
- Are they actually different results?

Problem

- ► Vanderwerff–Whitfield–Zizler ('94). Yes, if *Y* is WCG (WLD).
- \blacktriangleright ℓ_∞ does not embed in a space with norming M-basis (no LUR).
- **Kubiś ('07).** The analogue for Plichko spaces has negative answer.
- Problem, Kalenda ('00). Do all subspaces of *l*₁(Γ) have a norming M-bases? Are they Plichko?

(A few, recent) References

🔋 P. Hájek

Hilbert generated Banach spaces need not have a norming Markushevich basis Adv. Math. **351** (2019), 702–717.

P. Hájek, T. Russo, J. Somaglia, and S. Todorčević An Asplund space with norming Markuševič basis that is not weakly compactly generated Adv. Math. **392** (2021), 108041.

T. Russo and J. Somaglia Banach spaces of continuous functions without norming Markushevich bases Mathematika (in press), arXiv:2305.11737.

So, in the end, norming or morning?

Shamk you for your attemtiom!

I came in to the office early and switched as many M and N keys on keyboards as I could. Some might say I'm a monster but others will say nomster.

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Norming tales