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Joke fail
Yes, I did ask Sheldon to move my talk to the morning
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Once upon a time in Linear Algebra
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Some basis stuff

▶ Every Banach space X has a linear basis {vα}α∈Γ.
▶ Even when X is separable, the index set Γ is uncountable.

▶ So, linear bases don’t generalise complete orthonormal systems.
▶ Moreover, the linear functionals

∑
cαvα 7→ cα are never continuous.

▶ A sequence (en)∞n=1 is a Schauder basis if for all x ∈ X there are
unique scalars (xn)∞n=1 with

x =

∞∑
n=1

xnen (the series converges in X ).

▶ The coordinate functionals φn :
∑

xnen 7→ xn are continuous.
▶ Two drawbacks:

▶ Schauder bases can only exist in separable spaces.
▶ Enflo (’73). Not every separable Banach space has a Schauder basis.
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M for Markushevich

If (en)∞n=1 is a Schauder basis and (φn)∞n=1 are the coordinate functionals:
(i) 〈φk, en〉 = δk,n,
(ii) span{en} = X ,
(iii) spanw∗

{φn} = X ∗.
▶ Drawback:

∑∞
n=1〈φn, x〉en might not converge!

▶ Advantages:
▶ Markushevich (’43). Every separable Banach space has an M-basis.
▶ The definition extends to all Banach spaces (just change label!).

Example: The trigonometric system {t 7→ eikt}k∈Z is not a Schauder
basis of C(T) (or L1(T)), but it is an M-basis.
▶ Johnson (’70). ℓ∞ has no M-basis.
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Let us welcome the main character

We actually have more:
▶ If X ∗ is separable, X admits an M-basis with span{φα} = X ∗.
▶ Every separable Banach space, for every ε > 0, admits an M-basis
{en;φn}∞n=1 with ‖en‖ · ‖φn‖ ⩽ 1 + ε.

▶ Every separable Banach space admits a 1-norming M-basis.
A subspace Z of X ∗ is λ-norming (0 < λ ⩽ 1) if

λ‖x‖ ⩽ sup{|〈φ, x〉| : φ ∈ Z, ‖φ‖ ⩽ 1}.

Plainly, X ∗ is 1-norming, by the Hahn–Banach theorem.
Definition. An M-basis {eα;φα}α∈Γ is λ-norming (0 < λ ⩽ 1) if
span{φα}α∈Γ is a λ-norming subspace, namely if

λ‖x‖ ⩽ sup{|〈φ, x〉| : φ ∈ span{φα}α∈Γ, ‖φ‖ ⩽ 1}.
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Once upon a time in America
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”Do WCG spaces!”
Viktor Klee → Vaclav Zizler, ’69

▶ John–Zizler (’74). Every Banach space with norming M-basis has
a PRI and a LUR norm.

▶ Amir–Lindenstrauss (’68). A Banach space X is WCG if it admits
a weakly compact subset with dense linear span.
▶ Amir–Lindenstrauss (’68). WCG spaces have a PRI.
▶ Troyanski (’71). WCG spaces have a LUR norm.

▶ Perhaps WCG ←→ norming M-basis?
▶ The canonical basis of ℓ1(Γ) is 1-norming.
▶ John–Zizler (’74). Does every WCG space have a norming M-basis?

▶ More recent results: WCG spaces, or spaces with norming M-basis,
are Plichko. And Plichko spaces have a PRI and a LUR norm.

Theorem (Hájek, Advances ’19)
There exists a WCG C(K) space with no norming M-basis.
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Problems everywhere

▶ John–Zizler (’74). If a Banach space (X , ‖·‖) has a 1-norming
M-basis and ‖·‖ is Fréchet differentiable, then X is WCG.

▶ X has an M-basis {eα, φα}α∈Γ with span{φα} = X ∗,
iff X is Asplund and WCG.
▶ If a Banach space has a Fréchet norm, then it is Asplund.

▶ Godefroy (∼’90). Let X be an Asplund space with norming
M-basis. Is X WCG?

Theorem (Hájek, R., Somaglia, Todorčević, Advances ’21)
There exists an Asplund space X with a 1-norming M-basis such that X
is not WCG.

▶ X is a subspace of an Asplund C(K) space, which is not WCG.
▶ Problem. Is there a C(K) counterexample?

▶ (The same) Problem. Let K be a scattered compact space such
that C(K) space has a norming M-basis. Is K Eberlein?
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Forbidden area
Enter at your own risk

▶ Problem. Assume that a C(K) space has a norming M-basis. Must
K be Valdivia?

▶ Deville–Godefroy (’93). A Valdivia compact space K is Corson iff
it does not contain [0, ω1].

▶ Alster (’79). A scattered Corson compact is Eberlein.
▶ Problem. Let K be a Valdivia compact such that [0, ω1] ⊆ K. Does

it follow that C(K) has no norming M-basis?
▶ If both answers are YES, there is no C(K) counterexample to

Godefroy’s problem.
▶ K must be Valdivia. Distinguish two cases, if [0, ω1] ⊆ K, or not.

▶ Well, maybe you should consider the case K = [0, ω1]...
▶ READ BELOW (AND FORGET THE ABOVE).
▶ Well, maybe you should consider the case K = [0, ω1]...
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Back to the future
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How could I give a talk with no ω1?

▶ Well, maybe you should consider the case K = [0, ω1]...
▶ Alexandrov–Plichko (’06). C[0, ω1] admits no norming M-basis.

Theorem (R. and Somaglia, ’23+)
C[0, ω1] embeds in no Banach space with a norming M-basis.

▶ So if [0, ω1] is continuous image of K, C(K) has no norming
M-basis.
▶ This does not solve the second problem from the previous slide!

▶ If K = T is a tree (with the coarse wedge topology), then: T
scattered and C(T ) with norming M-basis implies T Eberlein.
▶ Some topological results on (scattered) trees with the coarse wedge

topology.
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Hold on, did we do something?

▶ Alexandrov–Plichko (’06). C[0, ω1] admits no norming M-basis.
▶ R.–Somaglia (’23+). C[0, ω1] does not embed in a Banach space

with norming M-basis.
▶ Are they actually different results?

Problem
Let X be a Banach space with norming M-basis and Y be a subspace of
X . Must Y have a norming M-basis?

▶ Vanderwerff–Whitfield–Zizler (’94). Yes, if Y is WCG (WLD).
▶ ℓ∞ does not embed in a space with norming M-basis (no LUR).
▶ Kubiś (’07). The analogue for Plichko spaces has negative answer.
▶ Problem, Kalenda (’00). Do all subspaces of ℓ1(Γ) have a

norming M-bases? Are they Plichko?
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(A few, recent) References
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So, in the end, norming or morning?

Thamk you for your attemtiom!
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