Geometry of tensor products and bilinear mappings in Banach spaces III

Abraham Rueda Zoca XXII Lluís Santaló School 2023 Linear and non-linear analysis in Banach spaces

Universidad de Granada Departamento de Análisis Matemático

UNIVERSIDAD DE GRANADA

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in I

My research is supported by MCIN/AEI/10.13039/501100011033: Grant PID2021-122126NB-C31; by Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22, and by Junta de Andalucía: Grants FQM-0185.

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

 $||y|| = \inf\{||x|| : x \in X, Q(x) = y\}.$

This means nothing but Y is isometric to X/Ker(Q).

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

 $||y|| = \inf\{||x|| : x \in X, Q(x) = y\}.$

This means nothing but Y is isometric to X/Ker(Q).

Theorem

If $P : X \longrightarrow Z$ and $Q : Y \longrightarrow W$ are quotient operators, then so is $P \otimes Q : X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$.

Description of elements of the $X \widehat{\otimes}_{\pi} Y$

Theorem

Let X be a normed space and call \tilde{X} to its completion.

Description of elements of the $X \widehat{\otimes}_{\pi} Y$

Theorem

Let *X* be a normed space and call \tilde{X} to its completion. Then, given $\tilde{x} \in \tilde{X}$ there exists a sequence $(x_n) \subseteq X$ such that $\sum_{n=1}^{\infty} ||x_n|| < \infty$ and that $\tilde{x} = \sum_{n=1}^{\infty} x_n$.

Description of elements of the $X \widehat{\otimes}_{\pi} Y$

Theorem

Let *X* be a normed space and call \tilde{X} to its completion. Then, given $\tilde{x} \in \tilde{X}$ there exists a sequence $(x_n) \subseteq X$ such that $\sum_{n=1}^{\infty} ||x_n|| < \infty$ and that $\tilde{x} = \sum_{n=1}^{\infty} x_n$. Moreover,

$$\|\tilde{x}\| = \inf \left\{ \sum_{n=1}^{\infty} \|x_n\| : \tilde{x} = \sum_{n=1}^{\infty} x_n \right\},\$$

where the above inf runs over all representations.

Theorem

Let *X* be a normed space and call \tilde{X} to its completion. Then, given $\tilde{x} \in \tilde{X}$ there exists a sequence $(x_n) \subseteq X$ such that $\sum_{n=1}^{\infty} ||x_n|| < \infty$ and that $\tilde{x} = \sum_{n=1}^{\infty} x_n$. Moreover,

$$\|\tilde{x}\| = \inf \left\{ \sum_{n=1}^{\infty} \|x_n\| : \tilde{x} = \sum_{n=1}^{\infty} x_n \right\},\$$

where the above inf runs over all representations.

We can assume $\tilde{x} \in B_{\tilde{X}}$. Let $m \in \mathbb{N}$. Take $x_1 \in B_X$ with $||x - x_1|| < \frac{1}{2^m}$. Since $2^m(x - x_1) \in B_X$ find x_2 s.t. $||2^m(x - x_1) - x_2|| < \frac{1}{2}$, so $||x - x_1 - \frac{1}{2^m}x_2|| < \frac{1}{2^{m+1}}$. Inductively there exists (x_n) such that

$$\left\|\tilde{x}-x_1-\sum_{k=1}^n\frac{1}{2^{m+k-1}}x_k\right\|<\frac{1}{2^{m+n-1}}.$$

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

 $||y|| = \inf\{||x|| : x \in X, Q(x) = y\}.$

• Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$.

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

 $||y|| = \inf\{||x|| : x \in X, Q(x) = y\}.$

• Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$. There exists $(z_n) \in Z$ and $(w_n) \in W$ such that $v = \sum_{n=1}^{\infty} z_n \otimes w_n$ and $\sum_{n=1}^{\infty} ||z_n|| ||w_n|| < ||v|| + \varepsilon$.

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

 $||y|| = \inf\{||x|| : x \in X, Q(x) = y\}.$

• Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$. There exists $(z_n) \in Z$ and $(w_n) \in W$ such that $v = \sum_{n=1}^{\infty} z_n \otimes w_n$ and $\sum_{n=1}^{\infty} ||z_n|| ||w_n|| < ||v|| + \varepsilon$. Call $\lambda_n := ||z_n|| ||w_n||$, so $v = \sum_{n=1}^{\infty} \lambda_n \frac{z_n}{||z_n||} \otimes \frac{w_n}{||w_n||}$.

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$. There exists $(z_n) \in Z$ and $(w_n) \in W$ such that $v = \sum_{n=1}^{\infty} z_n \otimes w_n$ and $\sum_{n=1}^{\infty} ||z_n|| ||w_n|| < ||v|| + \varepsilon$. Call $\lambda_n := ||z_n|| ||w_n||$, so $v = \sum_{n=1}^{\infty} \lambda_n \frac{z_n}{||z_n||} \otimes \frac{w_n}{||w_n||}$.
- *P*, *Q* quotient operators, for every $n \in \mathbb{N}$ there exists $x_n \in X$, $y_n \in Y$ with $P(x_n) = \frac{z_n}{\|z_n\|}, \|x_n\| < 1 + \varepsilon$ and $P(y_n) = \frac{w_n}{\|w_n\|}, \|y_n\| < 1 + \varepsilon$.

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

 $||y|| = \inf\{||x|| : x \in X, Q(x) = y\}.$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$. There exists $(z_n) \in Z$ and $(w_n) \in W$ such that $v = \sum_{n=1}^{\infty} z_n \otimes w_n$ and $\sum_{n=1}^{\infty} ||z_n|| ||w_n|| < ||v|| + \varepsilon$. Call $\lambda_n := ||z_n|| ||w_n||$, so $v = \sum_{n=1}^{\infty} \lambda_n \frac{z_n}{||z_n||} \otimes \frac{w_n}{||w_n||}$.
- *P*, *Q* quotient operators, for every $n \in \mathbb{N}$ there exists $x_n \in X$, $y_n \in Y$ with $P(x_n) = \frac{z_n}{\|z_n\|}, \|x_n\| < 1 + \varepsilon$ and $P(y_n) = \frac{w_n}{\|w_n\|}, \|y_n\| < 1 + \varepsilon$.

• $\sum_{n=1}^{\infty} \|\lambda_n x_n \otimes y_n\|$

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$. There exists $(z_n) \in Z$ and $(w_n) \in W$ such that $v = \sum_{n=1}^{\infty} z_n \otimes w_n$ and $\sum_{n=1}^{\infty} ||z_n|| ||w_n|| < ||v|| + \varepsilon$. Call $\lambda_n := ||z_n|| ||w_n||$, so $v = \sum_{n=1}^{\infty} \lambda_n \frac{z_n}{||z_n||} \otimes \frac{w_n}{||w_n||}$.
- *P*, *Q* quotient operators, for every $n \in \mathbb{N}$ there exists $x_n \in X$, $y_n \in Y$ with $P(x_n) = \frac{z_n}{\|z_n\|}, \|x_n\| < 1 + \varepsilon$ and $P(y_n) = \frac{w_n}{\|w_n\|}, \|y_n\| < 1 + \varepsilon$.
- $\sum_{n=1}^{\infty} \|\lambda_n x_n \otimes y_n\| \le \sum_{n=1}^{\infty} \lambda_n (1+\varepsilon)^2 = (1+\varepsilon)^2 \sum_{n=1}^{\infty} \|z_n\| \|w_n\|$

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$. There exists $(z_n) \in Z$ and $(w_n) \in W$ such that $v = \sum_{n=1}^{\infty} z_n \otimes w_n$ and $\sum_{n=1}^{\infty} ||z_n|| ||w_n|| < ||v|| + \varepsilon$. Call $\lambda_n := ||z_n|| ||w_n||$, so $v = \sum_{n=1}^{\infty} \lambda_n \frac{z_n}{||z_n||} \otimes \frac{w_n}{||w_n||}$.
- *P*, *Q* quotient operators, for every $n \in \mathbb{N}$ there exists $x_n \in X$, $y_n \in Y$ with $P(x_n) = \frac{z_n}{\|z_n\|}, \|x_n\| < 1 + \varepsilon$ and $P(y_n) = \frac{w_n}{\|w_n\|}, \|y_n\| < 1 + \varepsilon$.
- $\sum_{n=1}^{\infty} \|\lambda_n x_n \otimes y_n\| \le \sum_{n=1}^{\infty} \lambda_n (1+\varepsilon)^2 = (1+\varepsilon)^2 \sum_{n=1}^{\infty} \|z_n\| \|w_n\| \le (1+\varepsilon)^2 (\|v\|+\varepsilon).$

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon > 0$. There exists $(z_n) \in Z$ and $(w_n) \in W$ such that $v = \sum_{n=1}^{\infty} z_n \otimes w_n$ and $\sum_{n=1}^{\infty} ||z_n|| ||w_n|| < ||v|| + \varepsilon$. Call $\lambda_n := ||z_n|| ||w_n||$, so $v = \sum_{n=1}^{\infty} \lambda_n \frac{z_n}{||z_n||} \otimes \frac{w_n}{||w_n||}$.
- *P*, *Q* quotient operators, for every $n \in \mathbb{N}$ there exists $x_n \in X$, $y_n \in Y$ with $P(x_n) = \frac{z_n}{\|z_n\|}, \|x_n\| < 1 + \varepsilon$ and $P(y_n) = \frac{w_n}{\|w_n\|}, \|y_n\| < 1 + \varepsilon$.
- $\sum_{n=1}^{\infty} \|\lambda_n x_n \otimes y_n\| \le \sum_{n=1}^{\infty} \lambda_n (1+\varepsilon)^2 = (1+\varepsilon)^2 \sum_{n=1}^{\infty} \|z_n\| \|w_n\| \le (1+\varepsilon)^2 (\|v\|+\varepsilon).$
- $(P \otimes Q)(\sum_{n=1}^{\infty} \lambda_n x_n \otimes y_n) = \sum_{n=1}^{\infty} \lambda_n \frac{z_n}{\|z_n\|} \otimes \frac{w_n}{\|w_n\|} = v.$

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in I

Given $z \in X \widehat{\otimes}_{\pi} Y$, then

$$||z|| = \inf \left\{ \sum_{n=1}^{\infty} ||x_n|| ||y_n|| : z = \sum_{n=1}^{\infty} x_n \otimes y_n \right\}.$$

Given $z \in X \widehat{\otimes}_{\pi} Y$, then

$$||z|| = \inf \left\{ \sum_{n=1}^{\infty} ||x_n|| ||y_n|| : z = \sum_{n=1}^{\infty} x_n \otimes y_n \right\}.$$

When is the above inf a min?

Given $z \in X \widehat{\otimes}_{\pi} Y$, then

$$||z|| = \inf \left\{ \sum_{n=1}^{\infty} ||x_n|| ||y_n|| : z = \sum_{n=1}^{\infty} x_n \otimes y_n \right\}.$$

When is the above inf a min?

Projective norm attainment

We say $u \in X \widehat{\otimes}_{\pi} Y$ attains its projective norm if there exists a representation $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ s.t. $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.

 $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ stands for the elements attaining its projective norm.

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$z=\sum_{n=1}^{\infty}\lambda_n x_n\otimes y_n$$

for suitable $(\lambda_n) \in \mathbb{R}^+$, $x_n \in S_X$ and $y_n \in S_Y$.

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$z=\sum_{n=1}^{\infty}\lambda_n x_n\otimes y_n$$

for suitable $(\lambda_n) \in \mathbb{R}^+$, $x_n \in S_X$ and $y_n \in S_Y$. TFAE: • $||z|| = \sum_{n=1}^{\infty} \lambda_n$.

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$z=\sum_{n=1}^{\infty}\lambda_n x_n\otimes y_n$$

for suitable $(\lambda_n) \in \mathbb{R}^+$, $x_n \in S_X$ and $y_n \in S_Y$. TFAE:

$$||z|| = \sum_{n=1}^{\infty} \lambda_n.$$

② For every $B \in B(X \times Y)$ such that B(z) = ||z|| it follows $B(x_n, y_n) = 1$ holds for every $n \in \mathbb{N}$.

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$z=\sum_{n=1}^{\infty}\lambda_n x_n\otimes y_n$$

for suitable $(\lambda_n) \in \mathbb{R}^+$, $x_n \in S_X$ and $y_n \in S_Y$. TFAE:

$$||z|| = \sum_{n=1}^{\infty} \lambda_n.$$

② For every $B \in B(X \times Y)$ such that B(z) = ||z|| it follows $B(x_n, y_n) = 1$ holds for every $n \in \mathbb{N}$.

A soft convexity argument.

Does every tensor attain its norm?

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in I

If every element of X ⊗_π Y attains its projective norm, then any bilinear form B ∈ (X ⊗_π Y)* with ||B|| = 1 and which attains its norm as functional acting on (X ⊗_π Y) satisfies that B(x, y) = 1 holds for some x ∈ S_X and y ∈ S_Y (B attains its norm as bilinear map).

- If every element of X ⊗_π Y attains its projective norm, then any bilinear form B ∈ (X ⊗_π Y)* with ||B|| = 1 and which attains its norm as functional acting on (X ⊗_π Y) satisfies that B(x, y) = 1 holds for some x ∈ S_X and y ∈ S_Y (B attains its norm as bilinear map).
- With an argument of non-density of norm-attaining bilinear mappings, it is known that **not always** every tensor attains its projective norm (e.g. L₁([0, 1])⊗_πL₁([0, 1])).

- If every element of X ⊗_π Y attains its projective norm, then any bilinear form B ∈ (X ⊗_π Y)* with ||B|| = 1 and which attains its norm as functional acting on (X ⊗_π Y) satisfies that B(x, y) = 1 holds for some x ∈ S_X and y ∈ S_Y (B attains its norm as bilinear map).
- With an argument of non-density of norm-attaining bilinear mappings, it is known that **not always** every tensor attains its projective norm (e.g. L₁([0, 1])⊗_πL₁([0, 1])).
- In the opposite side, if *X* and *Y* are finite-dimensional then $B_{X \otimes_{\pi} Y} = \overline{\operatorname{conv}}(B_X \otimes B_Y) = \operatorname{conv}(B_X \otimes B_Y)$ by Minkowski-Carathéodory theorem, which implies that **every** tensor attains its projective norm.

- If every element of X ⊗_π Y attains its projective norm, then any bilinear form B ∈ (X ⊗_π Y)* with ||B|| = 1 and which attains its norm as functional acting on (X ⊗_π Y) satisfies that B(x, y) = 1 holds for some x ∈ S_X and y ∈ S_Y (B attains its norm as bilinear map).
- With an argument of non-density of norm-attaining bilinear mappings, it is known that **not always** every tensor attains its projective norm (e.g. L₁([0, 1])⊗_πL₁([0, 1])).
- In the opposite side, if X and Y are finite-dimensional then
 B_{X⊗_πY} = conv(B_X ⊗ B_Y) = conv(B_X ⊗ B_Y) by Minkowski-Carathéodory
 theorem, which implies that **every** tensor attains its projective norm.

This will be central for our main density result.

Let *X* be a Banach space. We will say that *X* has the *metric* π -*property* if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subseteq S_X$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in \{1, \ldots, n\}$ there exists $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$.

Let *X* be a Banach space. We will say that *X* has the *metric* π -*property* if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subseteq S_X$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in \{1, \ldots, n\}$ there exists $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$.

Banach spaces with a monotone Schauder basis.

Let *X* be a Banach space. We will say that *X* has the *metric* π -*property* if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subseteq S_X$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in \{1, \ldots, n\}$ there exists $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$.

Banach spaces with a monotone Schauder basis.

② Classical Banach spaces (i.e. L_p -spaces and L_1 -preduals).

Let *X* be a Banach space. We will say that *X* has the *metric* π -*property* if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subseteq S_X$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in \{1, \ldots, n\}$ there exists $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$.

- Banach spaces with a monotone Schauder basis.
- ② Classical Banach spaces (i.e. L_p -spaces and L_1 -preduals).
- Solute sums of spaces with metric- π has the metric- π .

Let *X* be a Banach space. We will say that *X* has the *metric* π -*property* if given $\varepsilon > 0$ and $\{x_1, \ldots, x_n\} \subseteq S_X$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in \{1, \ldots, n\}$ there exists $x'_i \in M$ with $||x_i - x'_i|| < \varepsilon$.

- Banach spaces with a monotone Schauder basis.
- Olassical Banach spaces (i.e. L_p-spaces and L₁-preduals).
- Solute sums of spaces with metric- π has the metric- π .
- The projective tensor product of spaces with the metric- π has the metric- π .

Theorem

If X and Y have the metric π -property then NA_{π}(X $\widehat{\otimes}_{\pi}$ Y) is dense in X $\widehat{\otimes}_{\pi}$ Y.

Sketch:

• By density, take $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \widehat{\otimes}_{\pi} Y$ arbitrary.

Theorem

If X and Y have the metric π -property then NA_{π}(X $\widehat{\otimes}_{\pi}$ Y) is dense in X $\widehat{\otimes}_{\pi}$ Y.

Sketch:

- By density, take $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \widehat{\otimes}_{\pi} Y$ arbitrary.
- By the metric π we can find 1-complemented subspaces $E \subseteq X$ and $F \subseteq Y$ and, for every *i*, we can find $x'_i \in E$ and $y'_i \in F$ such that $x'_i \approx x_i, y'_i \approx y_i$.

Theorem

If X and Y have the metric π -property then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch:

- By density, take $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \widehat{\otimes}_{\pi} Y$ arbitrary.
- By the metric π we can find 1-complemented subspaces $E \subseteq X$ and $F \subseteq Y$ and, for every *i*, we can find $x'_i \in E$ and $y'_i \in F$ such that $x'_i \approx x_i, y'_i \approx y_i$. Then $u \approx u' = \sum_{i=1}^n x'_i \otimes y'_i$.
- $u' \in E \widehat{\otimes}_{\pi} F$, so it attains its projective norm.

Theorem

If X and Y have the metric π -property then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch:

- By density, take $u = \sum_{i=1}^{n} x_i \otimes y_i \in X \widehat{\otimes}_{\pi} Y$ arbitrary.
- By the metric π we can find 1-complemented subspaces $E \subseteq X$ and $F \subseteq Y$ and, for every *i*, we can find $x'_i \in E$ and $y'_i \in F$ such that $x'_i \approx x_i, y'_i \approx y_i$. Then $u \approx u' = \sum_{i=1}^n x'_i \otimes y'_i$.
- $u' \in E \widehat{\otimes}_{\pi} F$, so it attains its projective norm. So we can write $u' = \sum_{i=1}^{m} a_i \otimes b_i$ and $||u'||_{E \widehat{\otimes}_{\pi} F} = \sum_{i=1}^{m} ||a_i|| ||b_i||$.
- $||u'||_{X \widehat{\otimes}_{\pi} Y} = ||u'||_{E \widehat{\otimes}_{\pi} F} = \sum_{i=1}^{m} ||a_i|| ||b_i||$ since $E \widehat{\otimes}_{\pi} F \subseteq X \widehat{\otimes}_{\pi} Y$ isometrically (and even 1-complemented).

• There exist Banach spaces X and Y such that $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ fails to be dense.

There exist Banach spaces X and Y such that NA_π(X ⊗_π Y) fails to be dense. In particular, there are finite rank elements in X ⊗_π Y which does not attain their norm.

- There exist Banach spaces X and Y such that NA_π(X ⊗_π Y) fails to be dense. In particular, there are finite rank elements in X ⊗_π Y which does not attain their norm.
- If X^* and Y^* has the Radon-Nikodym property and any of them has the approximation property, then NA_{π}($X^* \widehat{\otimes}_{\pi} Y^*$) is dense in $X \widehat{\otimes}_{\pi} Y$.

- There exist Banach spaces X and Y such that NA_π(X ⊗_π Y) fails to be dense. In particular, there are finite rank elements in X ⊗_π Y which does not attain their norm.
- If X^* and Y^* has the Radon-Nikodym property and any of them has the approximation property, then NA_{π}($X^* \widehat{\otimes}_{\pi} Y^*$) is dense in $X \widehat{\otimes}_{\pi} Y$.
- Solution If X is polyhedral (in particular c_0) and Y is a dual Banach space, then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

- There exist Banach spaces X and Y such that NA_π(X ⊗_π Y) fails to be dense. In particular, there are finite rank elements in X ⊗_π Y which does not attain their norm.
- If X^* and Y^* has the Radon-Nikodym property and any of them has the approximation property, then NA_{π}($X^* \widehat{\otimes}_{\pi} Y^*$) is dense in $X \widehat{\otimes}_{\pi} Y$.
- Solution If X is polyhedral (in particular c_0) and Y is a dual Banach space, then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

From 3, NA_{π}($c_0 \widehat{\otimes}_{\pi} \ell_2$) is dense in $c_0 \widehat{\otimes}_{\pi} \ell_2$,

- There exist Banach spaces X and Y such that NA_π(X ⊗_π Y) fails to be dense. In particular, there are finite rank elements in X ⊗_π Y which does not attain their norm.
- If X^* and Y^* has the Radon-Nikodym property and any of them has the approximation property, then NA_{π}($X^* \widehat{\otimes}_{\pi} Y^*$) is dense in $X \widehat{\otimes}_{\pi} Y$.
- Solution If X is polyhedral (in particular c_0) and Y is a dual Banach space, then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

From 3, NA_{π}($c_0 \widehat{\otimes}_{\pi} \ell_2$) is dense in $c_0 \widehat{\otimes}_{\pi} \ell_2$, but its complement is dense too!

• Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm.

• Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm. Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.

- Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm.Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.
- Let $T \in B(c_0 \times \ell_2) = L(c_0, \ell_2)$ with $\sum_{n=1}^{\infty} ||x_n|| ||y_n|| = ||u||_{\pi} = T(u) = \sum_{n=1}^{\infty} T(x_n)(y_n)$. Then *T* attains its norm at x_n for every *n*.

- Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm.Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.
- Let $T \in B(c_0 \times \ell_2) = L(c_0, \ell_2)$ with $\sum_{n=1}^{\infty} ||x_n|| ||y_n|| = ||u||_{\pi} = T(u) = \sum_{n=1}^{\infty} T(x_n)(y_n)$. Then *T* attains its norm at x_n for every *n*.
- A result of Lindenstrauss implies that T(X) is finite-dimensional.

- Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm. Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.
- Let $T \in B(c_0 \times \ell_2) = L(c_0, \ell_2)$ with $\sum_{n=1}^{\infty} ||x_n|| ||y_n|| = ||u||_{\pi} = T(u) = \sum_{n=1}^{\infty} T(x_n)(y_n)$. Then *T* attains its norm at x_n for every *n*.
- A result of Lindenstrauss implies that T(X) is finite-dimensional. Moreover, $T(x_n)(y_n) = ||x_n|| ||y_n||$ implies $T(x_n) = ||x_n||y_n|$ (via the identification $\ell_2^* = \ell_2$).

- Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm. Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.
- Let $T \in B(c_0 \times \ell_2) = L(c_0, \ell_2)$ with $\sum_{n=1}^{\infty} ||x_n|| ||y_n|| = ||u||_{\pi} = T(u) = \sum_{n=1}^{\infty} T(x_n)(y_n)$. Then *T* attains its norm at x_n for every *n*.
- A result of Lindenstrauss implies that T(X) is finite-dimensional. Moreover, $T(x_n)(y_n) = ||x_n|| ||y_n||$ implies $T(x_n) = ||x_n||y_n|$ (via the identification $\ell_2^* = \ell_2$).
- This implies $y_n \in T(X)$ for every *n*. From there it is proved that $u \in c_0 \otimes \ell_2$.

- Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm. Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.
- Let $T \in B(c_0 \times \ell_2) = L(c_0, \ell_2)$ with $\sum_{n=1}^{\infty} ||x_n|| ||y_n|| = ||u||_{\pi} = T(u) = \sum_{n=1}^{\infty} T(x_n)(y_n)$. Then *T* attains its norm at x_n for every *n*.
- A result of Lindenstrauss implies that T(X) is finite-dimensional. Moreover, $T(x_n)(y_n) = ||x_n|| ||y_n||$ implies $T(x_n) = ||x_n||y_n|$ (via the identification $\ell_2^* = \ell_2$).
- This implies $y_n \in T(X)$ for every *n*. From there it is proved that $u \in c_0 \otimes \ell_2$.

Example

 $\mathsf{NA}_{\pi}(\mathbf{c}_0\widehat{\otimes}_{\pi}\ell_2)\subseteq \mathbf{c}_0\otimes\ell_2.$

- Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm. Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.
- Let $T \in B(c_0 \times \ell_2) = L(c_0, \ell_2)$ with $\sum_{n=1}^{\infty} ||x_n|| ||y_n|| = ||u||_{\pi} = T(u) = \sum_{n=1}^{\infty} T(x_n)(y_n)$. Then *T* attains its norm at x_n for every *n*.
- A result of Lindenstrauss implies that T(X) is finite-dimensional. Moreover, $T(x_n)(y_n) = ||x_n|| ||y_n||$ implies $T(x_n) = ||x_n||y_n|$ (via the identification $\ell_2^* = \ell_2$).
- This implies $y_n \in T(X)$ for every *n*. From there it is proved that $u \in c_0 \otimes \ell_2$.

Example

 $NA_{\pi}(c_0 \widehat{\otimes}_{\pi} \ell_2) \subseteq c_0 \otimes \ell_2$. The element $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in c_0 \widehat{\otimes}_{\pi} \ell_2$ does not attain its projective norm.

- Set $u \in c_0 \widehat{\otimes}_{\pi} \ell_2$ attaining its projective norm.Write $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ with $||u||_{\pi} = \sum_{n=1}^{\infty} ||x_n|| ||y_n||$.
- Let $T \in B(c_0 \times \ell_2) = L(c_0, \ell_2)$ with $\sum_{n=1}^{\infty} ||x_n|| ||y_n|| = ||u||_{\pi} = T(u) = \sum_{n=1}^{\infty} T(x_n)(y_n)$. Then *T* attains its norm at x_n for every *n*.
- A result of Lindenstrauss implies that T(X) is finite-dimensional. Moreover, $T(x_n)(y_n) = ||x_n|| ||y_n||$ implies $T(x_n) = ||x_n||y_n|$ (via the identification $\ell_2^* = \ell_2$).
- This implies $y_n \in T(X)$ for every *n*. From there it is proved that $u \in c_0 \otimes \ell_2$.

Example

 $NA_{\pi}(c_0 \widehat{\otimes}_{\pi} \ell_2) \subseteq c_0 \otimes \ell_2$. The element $u = \sum_{n=1}^{\infty} \frac{1}{2^n} e_n \otimes e_n \in c_0 \widehat{\otimes}_{\pi} \ell_2$ does not attain its projective norm. From there, not norm attaining elements are dense.

Questions on projective norm-attainment

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in I

If X is reflexive and Y is finite-dimensional, does $NA(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$?

If X is reflexive and Y is finite-dimensional, does NA($X \widehat{\otimes}_{\pi} Y$) = $X \widehat{\otimes}_{\pi} Y$?

If X is not reflexive, the answer is no $(X = L_1(\mathbb{T}), Y = \mathbb{R}^2)$.

If X is reflexive and Y is finite-dimensional, does NA($X \widehat{\otimes}_{\pi} Y$) = $X \widehat{\otimes}_{\pi} Y$?

If X is not reflexive, the answer is no $(X = L_1(\mathbb{T}), Y = \mathbb{R}^2)$.

Question 2

When does $X \widehat{\otimes}_{\pi} Y \setminus NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense?

If X is reflexive and Y is finite-dimensional, does $NA(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$?

If X is not reflexive, the answer is no $(X = L_1(\mathbb{T}), Y = \mathbb{R}^2)$.

Question 2

When does $X \widehat{\otimes}_{\pi} Y \setminus NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense?

It is possible that if X depends upon finitely-many coordinates and Y^* is stricly convex then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) \subseteq X \otimes Y$.

If X is reflexive and Y is finite-dimensional, does $NA(X \widehat{\otimes}_{\pi} Y) = X \widehat{\otimes}_{\pi} Y$?

If X is not reflexive, the answer is no $(X = L_1(\mathbb{T}), Y = \mathbb{R}^2)$.

Question 2

When does $X \widehat{\otimes}_{\pi} Y \setminus NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ is dense?

It is possible that if X depends upon finitely-many coordinates and Y^* is stricly convex then $NA_{\pi}(X \widehat{\otimes}_{\pi} Y) \subseteq X \otimes Y$.

Question 3

May $NA_{\pi}(X \widehat{\otimes}_{\pi} Y)$ be residual or even contain an open dense set?

- S. Dantas, M. Jung, O. Roldán and A. R. Z. Norm-Attaining Tensors and Nuclear Operators, Mediterr. J. Math. 19 (2022), article 38.
- S. Dantas, L. García-Lirola, M. Jung and A. R. Z., On norm-attainment in (symmetric) tensor products, Quaestiones Math. 46, 2 (2023), 393–409.
- 📡 M. Fabian et al. Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics (Ouvrages de Mathématiques de la SMC), Springer, New York, 2011.
- A. R. Z., Several remarks on norm attaining in tensor product spaces. Mediterr. J. Math. 20 (2023), article 208.

📎 R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 2002.

・ロト ・日下・ ・ ヨト