Geometry of tensor products and bilinear mappings in Banach spaces III

Abraham Rueda Zoca XXII Lluís Santaló School 2023 Linear and non-linear analysis in Banach spaces

Universidad de Granada
Departamento de Análisis Matemático

Support

My research is supported by MCIN/AEI/10.13039/501100011033: Grant PID2021-122126NB-C31; by Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22, and by Junta de Andalucía: Grants FQM-0185.
f SéNeCa ${ }^{(+)}$

Quotients operators

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\}
$$

Quotients operators

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\}
$$

This means nothing but Y is isometric to $X / \operatorname{Ker}(Q)$.

Quotients operators

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\} .
$$

This means nothing but Y is isometric to $X / \operatorname{Ker}(Q)$.

Theorem

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ are quotient operators, then so is
$P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$.

Description of elements of the $X \widehat{\otimes}_{\pi} Y$

Theorem

Let X be a normed space and call \tilde{X} to its completion.

Description of elements of the $X \widehat{\otimes}_{\pi} Y$

Theorem

Let X be a normed space and call \tilde{X} to its completion. Then, given $\tilde{x} \in \tilde{X}$ there exists a sequence $\left(x_{n}\right) \subseteq X$ such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$ and that $\tilde{x}=\sum_{n=1}^{\infty} x_{n}$.

Description of elements of the $X \widehat{\otimes}_{\pi} Y$

Theorem

Let X be a normed space and call \tilde{X} to its completion. Then, given $\tilde{x} \in \tilde{X}$ there exists a sequence $\left(x_{n}\right) \subseteq X$ such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$ and that $\tilde{x}=\sum_{n=1}^{\infty} x_{n}$. Moreover,

$$
\|\tilde{x}\|=\inf \left\{\sum_{n=1}^{\infty}\left\|x_{n}\right\|: \tilde{x}=\sum_{n=1}^{\infty} x_{n}\right\},
$$

where the above inf runs over all representations.

Description of elements of the $X \widehat{\otimes}_{\pi} Y$

Theorem

Let X be a normed space and call \tilde{X} to its completion. Then, given $\tilde{x} \in \tilde{X}$ there exists a sequence $\left(x_{n}\right) \subseteq X$ such that $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$ and that $\tilde{x}=\sum_{n=1}^{\infty} x_{n}$. Moreover,

$$
\|\tilde{x}\|=\inf \left\{\sum_{n=1}^{\infty}\left\|x_{n}\right\|: \tilde{x}=\sum_{n=1}^{\infty} x_{n}\right\},
$$

where the above inf runs over all representations.
We can assume $\tilde{x} \in B_{\tilde{x}}$. Let $m \in \mathbb{N}$. Take $x_{1} \in B_{X}$ with $\left\|x-x_{1}\right\|<\frac{1}{2^{m}}$. Since $2^{m}\left(x-x_{1}\right) \in B_{X}$ find x_{2} s.t. $\left\|2^{m}\left(x-x_{1}\right)-x_{2}\right\|<\frac{1}{2}$, so $\left\|x-x_{1}-\frac{1}{2^{m}} x_{2}\right\|<\frac{1}{2^{m+1}}$. Inductively there exists $\left(x_{n}\right)$ such that

$$
\left\|\tilde{x}-x_{1}-\sum_{k=1}^{n} \frac{1}{2^{m+k-1}} x_{k}\right\|<\frac{1}{2^{m+n-1}} .
$$

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\} .
$$

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\} .
$$

- Select $v \in \boldsymbol{Z} \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$.

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\} .
$$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$. There exists $\left(z_{n}\right) \in Z$ and $\left(w_{n}\right) \in W$ such that $v=\sum_{n=1}^{\infty} z_{n} \otimes w_{n}$ and $\sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|<\|v\|+\varepsilon$.

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\}
$$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$. There exists $\left(z_{n}\right) \in Z$ and $\left(w_{n}\right) \in W$ such that $v=\sum_{n=1}^{\infty} z_{n} \otimes w_{n}$ and $\sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|<\|v\|+\varepsilon$. Call $\lambda_{n}:=\left\|z_{n}\right\|\left\|w_{n}\right\|$, so $v=\sum_{n=1}^{\infty} \lambda_{n} \frac{z_{n}}{\left\|z_{n}\right\|} \otimes \frac{w_{n}}{\left\|w_{n}\right\|}$.

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\} .
$$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$. There exists $\left(z_{n}\right) \in Z$ and $\left(w_{n}\right) \in W$ such that $v=\sum_{n=1}^{\infty} z_{n} \otimes w_{n}$ and $\sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|<\|v\|+\varepsilon$. Call $\lambda_{n}:=\left\|z_{n}\right\|\left\|w_{n}\right\|$, so $v=\sum_{n=1}^{\infty} \lambda_{n} \frac{z_{n}}{\left\|z_{n}\right\|} \otimes \frac{w_{n}}{\left\|w_{n}\right\|}$.
- P, Q quotient operators, for every $n \in \mathbb{N}$ there exists $x_{n} \in X, y_{n} \in Y$ with $P\left(x_{n}\right)=\frac{z_{n}}{\left\|z_{n}\right\|},\left\|x_{n}\right\|<1+\varepsilon$ and $P\left(y_{n}\right)=\frac{w_{n}}{\left\|w_{n}\right\|},\left\|y_{n}\right\|<1+\varepsilon$.

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\} .
$$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$. There exists $\left(z_{n}\right) \in Z$ and $\left(w_{n}\right) \in W$ such that $v=\sum_{n=1}^{\infty} z_{n} \otimes w_{n}$ and $\sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|<\|v\|+\varepsilon$. Call $\lambda_{n}:=\left\|z_{n}\right\|\left\|w_{n}\right\|$, so $v=\sum_{n=1}^{\infty} \lambda_{n} \frac{z_{n}}{\left\|z_{n}\right\|} \otimes \frac{w_{n}}{\left\|w_{n}\right\|}$.
- P, Q quotient operators, for every $n \in \mathbb{N}$ there exists $x_{n} \in X, y_{n} \in Y$ with $P\left(x_{n}\right)=\frac{z_{n}}{\left\|z_{n}\right\|},\left\|x_{n}\right\|<1+\varepsilon$ and $P\left(y_{n}\right)=\frac{w_{n}}{\left\|w_{n}\right\|},\left\|y_{n}\right\|<1+\varepsilon$.
- $\sum_{n=1}^{\infty}\left\|\lambda_{n} x_{n} \otimes y_{n}\right\|$

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\}
$$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$. There exists $\left(z_{n}\right) \in Z$ and $\left(w_{n}\right) \in W$ such that $v=\sum_{n=1}^{\infty} z_{n} \otimes w_{n}$ and $\sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|<\|v\|+\varepsilon$. Call $\lambda_{n}:=\left\|z_{n}\right\|\left\|w_{n}\right\|$, so $v=\sum_{n=1}^{\infty} \lambda_{n} \frac{z_{n}}{\left\|z_{n}\right\|} \otimes \frac{w_{n}}{\left\|w_{n}\right\|}$.
- P, Q quotient operators, for every $n \in \mathbb{N}$ there exists $x_{n} \in X, y_{n} \in Y$ with $P\left(x_{n}\right)=\frac{z_{n}}{\left\|z_{n}\right\|},\left\|x_{n}\right\|<1+\varepsilon$ and $P\left(y_{n}\right)=\frac{w_{n}}{\left\|w_{n}\right\|},\left\|y_{n}\right\|<1+\varepsilon$.
- $\sum_{n=1}^{\infty}\left\|\lambda_{n} x_{n} \otimes y_{n}\right\| \leq \sum_{n=1}^{\infty} \lambda_{n}(1+\varepsilon)^{2}=(1+\varepsilon)^{2} \sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|$

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\}
$$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$. There exists $\left(z_{n}\right) \in Z$ and $\left(w_{n}\right) \in W$ such that $v=\sum_{n=1}^{\infty} z_{n} \otimes w_{n}$ and $\sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|<\|v\|+\varepsilon$. Call $\lambda_{n}:=\left\|z_{n}\right\|\left\|w_{n}\right\|$, so $v=\sum_{n=1}^{\infty} \lambda_{n} \frac{z_{n}}{\left\|z_{n}\right\|} \otimes \frac{w_{n}}{\left\|w_{n}\right\|}$.
- P, Q quotient operators, for every $n \in \mathbb{N}$ there exists $x_{n} \in X, y_{n} \in Y$ with $P\left(x_{n}\right)=\frac{z_{n}}{\left\|z_{n}\right\|},\left\|x_{n}\right\|<1+\varepsilon$ and $P\left(y_{n}\right)=\frac{w_{n}}{\left\|w_{n}\right\|},\left\|y_{n}\right\|<1+\varepsilon$.
- $\sum_{n=1}^{\infty}\left\|\lambda_{n} x_{n} \otimes y_{n}\right\| \leq \sum_{n=1}^{\infty} \lambda_{n}(1+\varepsilon)^{2}=(1+\varepsilon)^{2} \sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\| \leq$ $(1+\varepsilon)^{2}(\|v\|+\varepsilon)$.

$P \otimes Q$ is a quotient operator

Quotient operator

An operator $Q: X \longrightarrow Y$ is a quotient operator if Q is surjective and

$$
\|y\|=\inf \{\|x\|: x \in X, Q(x)=y\} .
$$

- Select $v \in Z \widehat{\otimes}_{\pi} W$ and $\varepsilon>0$. There exists $\left(z_{n}\right) \in Z$ and $\left(w_{n}\right) \in W$ such that $v=\sum_{n=1}^{\infty} z_{n} \otimes w_{n}$ and $\sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\|<\|v\|+\varepsilon$. Call $\lambda_{n}:=\left\|z_{n}\right\|\left\|w_{n}\right\|$, so $v=\sum_{n=1}^{\infty} \lambda_{n} \frac{z_{n}}{\left\|z_{n}\right\|} \otimes \frac{w_{n}}{\left\|w_{n}\right\|}$.
- P, Q quotient operators, for every $n \in \mathbb{N}$ there exists $x_{n} \in X, y_{n} \in Y$ with $P\left(x_{n}\right)=\frac{z_{n}}{\left\|z_{n}\right\|},\left\|x_{n}\right\|<1+\varepsilon$ and $P\left(y_{n}\right)=\frac{w_{n}}{\left\|w_{n}\right\|},\left\|y_{n}\right\|<1+\varepsilon$.
- $\sum_{n=1}^{\infty}\left\|\lambda_{n} x_{n} \otimes y_{n}\right\| \leq \sum_{n=1}^{\infty} \lambda_{n}(1+\varepsilon)^{2}=(1+\varepsilon)^{2} \sum_{n=1}^{\infty}\left\|z_{n}\right\|\left\|w_{n}\right\| \leq$ $(1+\varepsilon)^{2}(\|v\|+\varepsilon)$.
- $(P \otimes Q)\left(\sum_{n=1}^{\infty} \lambda_{n} x_{n} \otimes y_{n}\right)=\sum_{n=1}^{\infty} \lambda_{n} \frac{z_{n}}{\left\|z_{n}\right\|} \otimes \frac{w_{n}}{\left\|w_{n}\right\|}=v$.

Projective norm attainment

Projective norm attainment

Proposition

Given $z \in X \widehat{\otimes}_{\pi} Y$, then

$$
\|z\|=\inf \left\{\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|: z=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}\right\}
$$

Projective norm attainment

Proposition

Given $z \in X \widehat{\otimes}_{\pi} Y$, then

$$
\|z\|=\inf \left\{\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|: z=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}\right\}
$$

When is the above inf a min?

Projective norm attainment

Proposition

Given $z \in X \widehat{\otimes}_{\pi} Y$, then

$$
\|z\|=\inf \left\{\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|: z=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}\right\}
$$

When is the above inf a min?

Projective norm attainment

We say $u \in X \widehat{\otimes}_{\pi} Y$ attains its projective norm if there exists a representation $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ s.t. $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
$\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ stands for the elements attaining its projective norm.

Tensors which attain its projective norm

Proposition

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$
z=\sum_{n=1}^{\infty} \lambda_{n} x_{n} \otimes y_{n}
$$

for suitable $\left(\lambda_{n}\right) \in \mathbb{R}^{+}, x_{n} \in S_{X}$ and $y_{n} \in S_{Y}$.

Tensors which attain its projective norm

Proposition

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$
z=\sum_{n=1}^{\infty} \lambda_{n} x_{n} \otimes y_{n}
$$

for suitable $\left(\lambda_{n}\right) \in \mathbb{R}^{+}, x_{n} \in S_{X}$ and $y_{n} \in S_{Y}$. TFAE:
(1) $\|z\|=\sum_{n=1}^{\infty} \lambda_{n}$.

Tensors which attain its projective norm

Proposition

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$
z=\sum_{n=1}^{\infty} \lambda_{n} x_{n} \otimes y_{n}
$$

for suitable $\left(\lambda_{n}\right) \in \mathbb{R}^{+}, x_{n} \in S_{X}$ and $y_{n} \in S_{Y}$. TFAE:
(1) $\|z\|=\sum_{n=1}^{\infty} \lambda_{n}$.
(2) For every $B \in \mathcal{B}(X \times Y)$ such that $B(z)=\|z\|$ it follows $B\left(x_{n}, y_{n}\right)=1$ holds for every $n \in \mathbb{N}$.

Tensors which attain its projective norm

Proposition

Let X and Y be two Banach spaces. Let $z \in X \widehat{\otimes}_{\pi} Y$ such that

$$
z=\sum_{n=1}^{\infty} \lambda_{n} x_{n} \otimes y_{n}
$$

for suitable $\left(\lambda_{n}\right) \in \mathbb{R}^{+}, x_{n} \in S_{X}$ and $y_{n} \in S_{Y}$. TFAE:
(1) $\|z\|=\sum_{n=1}^{\infty} \lambda_{n}$.
(2) For every $B \in \mathcal{B}(X \times Y)$ such that $B(z)=\|z\|$ it follows $B\left(x_{n}, y_{n}\right)=1$ holds for every $n \in \mathbb{N}$.

A soft convexity argument.

Does every tensor attain its norm?

Does every tensor attain its norm?

- If every element of $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then any bilinear form $B \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ with $\|B\|=1$ and which attains its norm as functional acting on $\left(X \widehat{\otimes}_{\pi} Y\right)$ satisfies that $B(x, y)=1$ holds for some $x \in S_{X}$ and $y \in S_{Y}$ (B attains its norm as bilinear map).

Does every tensor attain its norm?

- If every element of $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then any bilinear form $B \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ with $\|B\|=1$ and which attains its norm as functional acting on $\left(X \widehat{\otimes}_{\pi} Y\right)$ satisfies that $B(x, y)=1$ holds for some $x \in S_{X}$ and $y \in S_{Y}$ (B attains its norm as bilinear map).
- With an argument of non-density of norm-attaining bilinear mappings, it is known that not always every tensor attains its projective norm (e.g. $\left.L_{1}([0,1]) \widehat{\otimes}_{\pi} L_{1}([0,1])\right)$.

Does every tensor attain its norm?

- If every element of $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then any bilinear form $B \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ with $\|B\|=1$ and which attains its norm as functional acting on $\left(X \widehat{\otimes}_{\pi} Y\right)$ satisfies that $B(x, y)=1$ holds for some $x \in S_{X}$ and $y \in S_{Y}$ (B attains its norm as bilinear map).
- With an argument of non-density of norm-attaining bilinear mappings, it is known that not always every tensor attains its projective norm (e.g. $\left.L_{1}([0,1]) \widehat{\otimes}_{\pi} L_{1}([0,1])\right)$.
- In the opposite side, if X and Y are finite-dimensional then $B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right)=\operatorname{conv}\left(B_{X} \otimes B_{Y}\right)$ by Minkowski-Carathéodory theorem, which implies that every tensor attains its projective norm.

Does every tensor attain its norm?

- If every element of $X \widehat{\otimes}_{\pi} Y$ attains its projective norm, then any bilinear form $B \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$ with $\|B\|=1$ and which attains its norm as functional acting on $\left(X \widehat{\otimes}_{\pi} Y\right)$ satisfies that $B(x, y)=1$ holds for some $x \in S_{X}$ and $y \in S_{Y}$ (B attains its norm as bilinear map).
- With an argument of non-density of norm-attaining bilinear mappings, it is known that not always every tensor attains its projective norm (e.g. $\left.L_{1}([0,1]) \widehat{\otimes}_{\pi} L_{1}([0,1])\right)$.
- In the opposite side, if X and Y are finite-dimensional then $B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right)=\operatorname{conv}\left(B_{X} \otimes B_{Y}\right)$ by Minkowski-Carathéodory theorem, which implies that every tensor attains its projective norm.
This will be central for our main density result.

metric π-property

Metric π-property

Let X be a Banach space. We will say that X has the metric π-property if given $\varepsilon>0$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq S_{X}$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in\{1, \ldots, n\}$ there exists $x_{i}^{\prime} \in M$ with $\left\|x_{i}-x_{i}^{\prime}\right\|<\varepsilon$.

metric π-property

Metric π-property

Let X be a Banach space. We will say that X has the metric π-property if given $\varepsilon>0$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq S_{X}$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in\{1, \ldots, n\}$ there exists $x_{i}^{\prime} \in M$ with $\left\|x_{i}-x_{i}^{\prime}\right\|<\varepsilon$.
(1) Banach spaces with a monotone Schauder basis.

metric π-property

Metric π-property

Let X be a Banach space. We will say that X has the metric π-property if given $\varepsilon>0$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq S_{X}$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in\{1, \ldots, n\}$ there exists $x_{i}^{\prime} \in M$ with $\left\|x_{i}-x_{i}^{\prime}\right\|<\varepsilon$.
(1) Banach spaces with a monotone Schauder basis.
(2) Classical Banach spaces (i.e. L_{p}-spaces and L_{1}-preduals).

metric π-property

Metric π-property

Let X be a Banach space. We will say that X has the metric π-property if given $\varepsilon>0$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq S_{X}$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in\{1, \ldots, n\}$ there exists $x_{i}^{\prime} \in M$ with $\left\|x_{i}-x_{i}^{\prime}\right\|<\varepsilon$.
(1) Banach spaces with a monotone Schauder basis.
(2) Classical Banach spaces (i.e. L_{p}-spaces and L_{1}-preduals).
(3) Absolute sums of spaces with metric- π has the metric $-\pi$.

metric π-property

Metric π-property

Let X be a Banach space. We will say that X has the metric π-property if given $\varepsilon>0$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq S_{X}$ a finite collection in the sphere, then we can find a finite dimensional 1-complemented subspace $M \subseteq X$ such that for each $i \in\{1, \ldots, n\}$ there exists $x_{i}^{\prime} \in M$ with $\left\|x_{i}-x_{i}^{\prime}\right\|<\varepsilon$.
(1) Banach spaces with a monotone Schauder basis.
(2) Classical Banach spaces (i.e. L_{p}-spaces and L_{1}-preduals).
(3) Absolute sums of spaces with metric- π has the metric $-\pi$.
(9) The projective tensor product of spaces with the metric- π has the metric- π.

Metric π-property and the density tensor attaining its norm

Theorem

If X and Y have the metric π-property then $N A_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch:

- By density, take $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \widehat{\otimes}_{\pi} Y$ arbitrary.

Metric π-property and the density tensor attaining its norm

Theorem

If X and Y have the metric π-property then $N A_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch:

- By density, take $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \widehat{\otimes}_{\pi} Y$ arbitrary.
- By the metric π we can find 1-complemented subspaces $E \subseteq X$ and $F \subseteq Y$ and, for every i, we can find $x_{i}^{\prime} \in E$ and $y_{i}^{\prime} \in F$ such that $x_{i}^{\prime} \approx x_{i}, y_{i}^{\prime} \approx y_{i}$.

Metric π-property and the density tensor attaining its norm

Theorem

If X and Y have the metric π-property then $N A_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch:

- By density, take $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \widehat{\otimes}_{\pi} Y$ arbitrary.
- By the metric π we can find 1-complemented subspaces $E \subseteq X$ and $F \subseteq Y$ and, for every i, we can find $x_{i}^{\prime} \in E$ and $y_{i}^{\prime} \in F$ such that $x_{i}^{\prime} \approx x_{i}, y_{i}^{\prime} \approx y_{i}$. Then $u \approx u^{\prime}=\sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}$.
- $u^{\prime} \in E \widehat{\otimes}_{\pi} F$, so it attains its projective norm.

Metric π-property and the density tensor attaining its norm

Theorem

If X and Y have the metric π-property then $N A_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Sketch:

- By density, take $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \widehat{\otimes}_{\pi} Y$ arbitrary.
- By the metric π we can find 1-complemented subspaces $E \subseteq X$ and $F \subseteq Y$ and, for every i, we can find $x_{i}^{\prime} \in E$ and $y_{i}^{\prime} \in F$ such that $x_{i}^{\prime} \approx x_{i}, y_{i}^{\prime} \approx y_{i}$. Then $u \approx u^{\prime}=\sum_{i=1}^{n} x_{i}^{\prime} \otimes y_{i}^{\prime}$.
- $u^{\prime} \in E \widehat{\otimes}_{\pi} F$, so it attains its projective norm. So we can write $u^{\prime}=\sum_{i=1}^{m} a_{i} \otimes b_{i}$ and $\left\|u^{\prime}\right\|_{E \widehat{\otimes}_{\pi} F}=\sum_{i=1}^{m}\left\|a_{i}\right\|\left\|b_{i}\right\|$.
- $\left\|u^{\prime}\right\|_{X \widehat{\otimes}_{\pi} Y}=\left\|u^{\prime}\right\|_{E \widehat{\otimes}_{\pi} F}=\sum_{i=1}^{m}\left\|a_{i}\right\|\left\|b_{i}\right\|$ since $E \widehat{\otimes}_{\pi} F \subseteq X \widehat{\otimes}_{\pi} Y$ isometrically (and even 1-complemented).

Some on norm-attainment

(1) There exist Banach spaces X and Y such that $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ fails to be dense.

Some on norm-attainment

(1) There exist Banach spaces X and Y such that $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ fails to be dense. In particular, there are finite rank elements in $X \widehat{\otimes}_{\pi} Y$ which does not attain their norm.

Some on norm-attainment

(1) There exist Banach spaces X and Y such that $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ fails to be dense. In particular, there are finite rank elements in $X \widehat{\otimes}_{\pi} Y$ which does not attain their norm.
(2) If X^{*} and Y^{*} has the Radon-Nikodym property and any of them has the approximation property, then $\mathrm{NA}_{\pi}\left(X^{*} \widehat{\otimes}_{\pi} Y^{*}\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Some on norm-attainment

(1) There exist Banach spaces X and Y such that $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ fails to be dense. In particular, there are finite rank elements in $X \widehat{\otimes}_{\pi} Y$ which does not attain their norm.
(2) If X^{*} and Y^{*} has the Radon-Nikodym property and any of them has the approximation property, then $\mathrm{NA}_{\pi}\left(X^{*} \widehat{\otimes}_{\pi} Y^{*}\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.
(3) If X is polyhedral (in particular c_{0}) and Y is a dual Banach space, then $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.

Some on norm-attainment

(1) There exist Banach spaces X and Y such that $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ fails to be dense. In particular, there are finite rank elements in $X \widehat{\otimes}_{\pi} Y$ which does not attain their norm.
(2) If X^{*} and Y^{*} has the Radon-Nikodym property and any of them has the approximation property, then $\mathrm{NA}_{\pi}\left(X^{*} \widehat{\otimes}_{\pi} Y^{*}\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.
(3) If X is polyhedral (in particular c_{0}) and Y is a dual Banach space, then $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.
From $3, \mathrm{NA}_{\pi}\left(c_{0} \widehat{\otimes}_{\pi} \ell_{2}\right)$ is dense in $c_{0} \widehat{\otimes}_{\pi} \ell_{2}$,

Some on norm-attainment

(1) There exist Banach spaces X and Y such that $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ fails to be dense. In particular, there are finite rank elements in $X \widehat{\otimes}_{\pi} Y$ which does not attain their norm.
(2) If X^{*} and Y^{*} has the Radon-Nikodym property and any of them has the approximation property, then $\mathrm{NA}_{\pi}\left(X^{*} \widehat{\otimes}_{\pi} Y^{*}\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.
(3) If X is polyhedral (in particular c_{0}) and Y is a dual Banach space, then $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense in $X \widehat{\otimes}_{\pi} Y$.
From 3, $\mathrm{NA}_{\pi}\left(c_{0} \widehat{\otimes}_{\pi} \ell_{2}\right)$ is dense in $c_{0} \widehat{\otimes}_{\pi} \ell_{2}$, but its complement is dense too!

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm. Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
- Let $T \in B\left(c_{0} \times \ell_{2}\right)=L\left(c_{0}, \ell_{2}\right)$ with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|=\|u\|_{\pi}=T(u)=\sum_{n=1}^{\infty} T\left(x_{n}\right)\left(y_{n}\right)$. Then T attains its norm at x_{n} for every n.

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
- Let $T \in B\left(c_{0} \times \ell_{2}\right)=L\left(c_{0}, \ell_{2}\right)$ with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|=\|u\|_{\pi}=T(u)=\sum_{n=1}^{\infty} T\left(x_{n}\right)\left(y_{n}\right)$. Then T attains its norm at x_{n} for every n.
- A result of Lindenstrauss implies that $T(X)$ is finite-dimensional.

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
- Let $T \in B\left(c_{0} \times \ell_{2}\right)=L\left(c_{0}, \ell_{2}\right)$ with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|=\|u\|_{\pi}=T(u)=\sum_{n=1}^{\infty} T\left(x_{n}\right)\left(y_{n}\right)$. Then T attains its norm at x_{n} for every n.
- A result of Lindenstrauss implies that $T(X)$ is finite-dimensional. Moreover, $T\left(x_{n}\right)\left(y_{n}\right)=\left\|x_{n}\right\|\left\|y_{n}\right\|$ implies $T\left(x_{n}\right)=\left\|x_{n}\right\| y_{n}$ (via the identification $\ell_{2}^{*}=\ell_{2}$).

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
- Let $T \in B\left(c_{0} \times \ell_{2}\right)=L\left(c_{0}, \ell_{2}\right)$ with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|=\|u\|_{\pi}=T(u)=\sum_{n=1}^{\infty} T\left(x_{n}\right)\left(y_{n}\right)$. Then T attains its norm at x_{n} for every n.
- A result of Lindenstrauss implies that $T(X)$ is finite-dimensional. Moreover, $T\left(x_{n}\right)\left(y_{n}\right)=\left\|x_{n}\right\|\left\|y_{n}\right\|$ implies $T\left(x_{n}\right)=\left\|x_{n}\right\| y_{n}$ (via the identification $\ell_{2}^{*}=\ell_{2}$).
- This implies $y_{n} \in T(X)$ for every n. From there it is proved that $u \in c_{0} \otimes \ell_{2}$.

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
- Let $T \in B\left(c_{0} \times \ell_{2}\right)=L\left(c_{0}, \ell_{2}\right)$ with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|=\|u\|_{\pi}=T(u)=\sum_{n=1}^{\infty} T\left(x_{n}\right)\left(y_{n}\right)$. Then T attains its norm at x_{n} for every n.
- A result of Lindenstrauss implies that $T(X)$ is finite-dimensional. Moreover, $T\left(x_{n}\right)\left(y_{n}\right)=\left\|x_{n}\right\|\left\|y_{n}\right\|$ implies $T\left(x_{n}\right)=\left\|x_{n}\right\| y_{n}$ (via the identification $\ell_{2}^{*}=\ell_{2}$).
- This implies $y_{n} \in T(X)$ for every n. From there it is proved that $u \in c_{0} \otimes \ell_{2}$.

Example

$N A_{\pi}\left(c_{0} \widehat{\otimes}_{\pi} \ell_{2}\right) \subseteq c_{0} \otimes \ell_{2}$.

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
- Let $T \in B\left(c_{0} \times \ell_{2}\right)=L\left(c_{0}, \ell_{2}\right)$ with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|=\|u\|_{\pi}=T(u)=\sum_{n=1}^{\infty} T\left(x_{n}\right)\left(y_{n}\right)$. Then T attains its norm at x_{n} for every n.
- A result of Lindenstrauss implies that $T(X)$ is finite-dimensional. Moreover, $T\left(x_{n}\right)\left(y_{n}\right)=\left\|x_{n}\right\|\left\|y_{n}\right\|$ implies $T\left(x_{n}\right)=\left\|x_{n}\right\| y_{n}$ (via the identification $\ell_{2}^{*}=\ell_{2}$).
- This implies $y_{n} \in T(X)$ for every n. From there it is proved that $u \in c_{0} \otimes \ell_{2}$.

Example

$\mathrm{NA}_{\pi}\left(c_{0} \widehat{\otimes}_{\pi} \ell_{2}\right) \subseteq c_{0} \otimes \ell_{2}$. The element $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} e_{n} \otimes e_{n} \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ does not attain its projective norm.

Non-norm attaining tensors may be dense!

- Set $u \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ attaining its projective norm.Write $u=\sum_{n=1}^{\infty} x_{n} \otimes y_{n}$ with $\|u\|_{\pi}=\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|$.
- Let $T \in B\left(c_{0} \times \ell_{2}\right)=L\left(c_{0}, \ell_{2}\right)$ with $\sum_{n=1}^{\infty}\left\|x_{n}\right\|\left\|y_{n}\right\|=\|u\|_{\pi}=T(u)=\sum_{n=1}^{\infty} T\left(x_{n}\right)\left(y_{n}\right)$. Then T attains its norm at x_{n} for every n.
- A result of Lindenstrauss implies that $T(X)$ is finite-dimensional. Moreover, $T\left(x_{n}\right)\left(y_{n}\right)=\left\|x_{n}\right\|\left\|y_{n}\right\|$ implies $T\left(x_{n}\right)=\left\|x_{n}\right\| y_{n}$ (via the identification $\ell_{2}^{*}=\ell_{2}$).
- This implies $y_{n} \in T(X)$ for every n. From there it is proved that $u \in c_{0} \otimes \ell_{2}$.

Example

$\mathrm{NA}_{\pi}\left(c_{0} \widehat{\otimes}_{\pi} \ell_{2}\right) \subseteq c_{0} \otimes \ell_{2}$. The element $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} e_{n} \otimes e_{n} \in c_{0} \widehat{\otimes}_{\pi} \ell_{2}$ does not attain its projective norm. From there, not norm attaining elements are dense.

Questions on projective norm-attainment

Questions on projective norm-attainment

Question 1

If X is reflexive and Y is finite-dimensional, does $\mathrm{NA}\left(X \widehat{\otimes}_{\pi} Y\right)=X \widehat{\otimes}_{\pi} Y$?

Questions on projective norm-attainment

Question 1

If X is reflexive and Y is finite-dimensional, does $\mathrm{NA}\left(X \widehat{\otimes}_{\pi} Y\right)=X \widehat{\otimes}_{\pi} Y$?
If X is not reflexive, the answer is no $\left(X=L_{1}(\mathbb{T}), Y=\mathbb{R}^{2}\right)$.

Questions on projective norm-attainment

Question 1

If X is reflexive and Y is finite-dimensional, does $\mathrm{NA}\left(X \widehat{\otimes}_{\pi} Y\right)=X \widehat{\otimes}_{\pi} Y$?
If X is not reflexive, the answer is no $\left(X=L_{1}(\mathbb{T}), Y=\mathbb{R}^{2}\right)$.

Question 2

When does $X \widehat{\otimes}_{\pi} Y \backslash \mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense?

Questions on projective norm-attainment

Question 1

If X is reflexive and Y is finite-dimensional, does $\mathrm{NA}\left(X \widehat{\otimes}_{\pi} Y\right)=X \widehat{\otimes}_{\pi} Y$?
If X is not reflexive, the answer is no $\left(X=L_{1}(\mathbb{T}), Y=\mathbb{R}^{2}\right)$.

Question 2

When does $X \widehat{\otimes}_{\pi} Y \backslash \mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense?
It is possible that if X depends upon finitely-many coordinates and Y^{*} is stricly convex then $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right) \subseteq X \otimes Y$.

Questions on projective norm-attainment

Question 1

If X is reflexive and Y is finite-dimensional, does $\mathrm{NA}\left(X \widehat{\otimes}_{\pi} Y\right)=X \widehat{\otimes}_{\pi} Y$?
If X is not reflexive, the answer is no $\left(X=L_{1}(\mathbb{T}), Y=\mathbb{R}^{2}\right)$.

Question 2

When does $X \widehat{\otimes}_{\pi} Y \backslash \mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ is dense?
It is possible that if X depends upon finitely-many coordinates and Y^{*} is stricly convex then $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right) \subseteq X \otimes Y$.

Question 3

May $\mathrm{NA}_{\pi}\left(X \widehat{\otimes}_{\pi} Y\right)$ be residual or even contain an open dense set?

References

(S. Dantas, M. Jung, O. Roldán and A. R. Z. Norm-Attaining Tensors and Nuclear Operators, Mediterr. J. Math. 19 (2022), article 38.
國 S. Dantas, L. García-Lirola, M. Jung and A. R. Z., On norm-attainment in (symmetric) tensor products, Quaestiones Math. 46, 2 (2023), 393-409.
M. Fabian et al, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics (Ouvrages de Mathématiques de la SMC), Springer, New York, 2011.
(A. R. Z., Several remarks on norm attaining in tensor product spaces, Mediterr. J. Math. 20 (2023), article 208.
R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 2002.

Happy birthday!

