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Quotients operators

Quotient operator

An operator Q : X −→ Y is a quotient operator if Q is surjective and

‖y‖ = inf{‖x‖ : x ∈ X ,Q(x) = y}.

This means nothing but Y is isometric to X/Ker(Q).

Theorem
If P : X −→ Z and Q : Y −→W are quotient operators, then so is
P ⊗Q : X ⊗̂πY −→ Z ⊗̂πW.
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Description of elements of the X ⊗̂πY

Theorem
Let X be a normed space and call X̃ to its completion.

Then, given x̃ ∈ X̃
there exists a sequence (xn) ⊆ X such that

∑∞
n=1 ‖xn‖ <∞ and that

x̃ =
∑∞

n=1 xn. Moreover,

‖x̃‖ = inf

{ ∞∑
n=1

‖xn‖ : x̃ =
∞∑

n=1

xn

}
,

where the above inf runs over all representations.

We can assume x̃ ∈ BX̃ . Let m ∈ N. Take x1 ∈ BX with ‖x − x1‖ < 1
2m . Since

2m(x − x1) ∈ BX find x2 s.t. ‖2m(x − x1)− x2‖ < 1
2 , so ‖x − x1 − 1

2m x2‖ < 1
2m+1 .

Inductively there exists (xn) such that∥∥∥∥∥x̃ − x1 −
n∑

k=1

1
2m+k−1 xk

∥∥∥∥∥ < 1
2m+n−1 .
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P ⊗Q is a quotient operator

Quotient operator

An operator Q : X −→ Y is a quotient operator if Q is surjective and

‖y‖ = inf{‖x‖ : x ∈ X ,Q(x) = y}.

Select v ∈ Z ⊗̂πW and ε > 0. There exists (zn) ∈ Z and (wn) ∈W such
that v =

∑∞
n=1 zn ⊗ wn and

∑∞
n=1 ‖zn‖‖wn‖ < ‖v‖+ ε. Call

λn := ‖zn‖‖wn‖, so v =
∑∞

n=1 λn
zn
‖zn‖ ⊗

wn
‖wn‖ .

P, Q quotient operators, for every n ∈ N there exists xn ∈ X , yn ∈ Y with
P(xn) =

zn
‖zn‖ , ‖xn‖ < 1 + ε and P(yn) =

wn
‖wn‖ , ‖yn‖ < 1 + ε.∑∞

n=1 ‖λnxn ⊗ yn‖ ≤
∑∞

n=1 λn(1 + ε)2 = (1 + ε)2∑∞
n=1 ‖zn‖‖wn‖ ≤

(1 + ε)2(‖v‖+ ε).

(P ⊗Q)(
∑∞

n=1 λnxn ⊗ yn) =
∑∞

n=1 λn
zn
‖zn‖ ⊗

wn
‖wn‖ = v .
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Projective norm attainment

Proposition
Given z ∈ X ⊗̂πY, then

‖z‖ = inf

{ ∞∑
n=1

‖xn‖‖yn‖ : z =
∞∑

n=1

xn ⊗ yn

}
.

When is the above inf a min?
Projective norm attainment

We say u ∈ X ⊗̂πY attains its projective norm if there exists a representation
u =

∑∞
n=1 xn ⊗ yn s.t. ‖u‖π =

∑∞
n=1 ‖xn‖‖yn‖.

NAπ(X ⊗̂πY ) stands for the elements attaining its projective norm.
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Tensors which attain its projective norm

Proposition
Let X and Y be two Banach spaces. Let z ∈ X ⊗̂πY such that

z =
∞∑

n=1

λnxn ⊗ yn

for suitable (λn) ∈ R+, xn ∈ SX and yn ∈ SY .

TFAE:
1 ‖z‖ =

∑∞
n=1 λn.

2 For every B ∈ B(X × Y ) such that B(z) = ‖z‖ it follows B(xn, yn) = 1
holds for every n ∈ N.

A soft convexity argument.
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Does every tensor attain its norm?

If every element of X ⊗̂πY attains its projective norm, then any bilinear
form B ∈ (X ⊗̂πY )∗ with ‖B‖ = 1 and which attains its norm as functional
acting on (X ⊗̂πY ) satisfies that B(x , y) = 1 holds for some x ∈ SX and
y ∈ SY (B attains its norm as bilinear map).
With an argument of non-density of norm-attaining bilinear mappings, it is
known that not always every tensor attains its projective norm (e.g.
L1([0,1])⊗̂πL1([0,1])).
In the opposite side, if X and Y are finite-dimensional then
BX⊗̂πY = conv(BX ⊗ BY ) = conv(BX ⊗ BY ) by Minkowski-Carathéodory
theorem, which implies that every tensor attains its projective norm.

This will be central for our main density result.
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metric π-property

Metric π-property

Let X be a Banach space. We will say that X has the metric π-property if
given ε > 0 and {x1, . . . , xn} ⊆ SX a finite collection in the sphere, then we can
find a finite dimensional 1-complemented subspace M ⊆ X such that for each
i ∈ {1, . . . ,n} there exists x ′i ∈ M with ‖xi − x ′i ‖ < ε.

1 Banach spaces with a monotone Schauder basis.
2 Classical Banach spaces (i.e. Lp-spaces and L1-preduals).
3 Absolute sums of spaces with metric-π has the metric-π.
4 The projective tensor product of spaces with the metric-π has the

metric-π.
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Metric π-property and the density tensor attaining its
norm

Theorem
If X and Y have the metric π-property then NAπ(X ⊗̂πY ) is dense in X ⊗̂πY.

Sketch:
By density, take u =

∑n
i=1 xi ⊗ yi ∈ X ⊗̂πY arbitrary.

By the metric π we can find 1-complemented subspaces E ⊆ X and
F ⊆ Y and, for every i , we can find x ′i ∈ E and y ′i ∈ F such that
x ′i ≈ xi , y ′i ≈ yi . Then u ≈ u′ =

∑n
i=1 x ′i ⊗ y ′i .

u′ ∈ E⊗̂πF , so it attains its projective norm. So we can write
u′ =

∑m
i=1 ai ⊗ bi and ‖u′‖E⊗̂πF =

∑m
i=1 ‖ai‖‖bi‖.

‖u′‖X⊗̂πY = ‖u′‖E⊗̂πF =
∑m

i=1 ‖ai‖‖bi‖ since E⊗̂πF ⊆ X ⊗̂πY
isometrically (and even 1-complemented).
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Some on norm-attainment

1 There exist Banach spaces X and Y such that NAπ(X ⊗̂πY ) fails to be
dense.

In particular, there are finite rank elements in X ⊗̂πY which does
not attain their norm.

2 If X ∗ and Y ∗ has the Radon-Nikodym property and any of them has the
approximation property, then NAπ(X ∗⊗̂πY ∗) is dense in X ⊗̂πY .

3 If X is polyhedral (in particular c0) and Y is a dual Banach space, then
NAπ(X ⊗̂πY ) is dense in X ⊗̂πY .

From 3, NAπ(c0⊗̂π`2) is dense in c0⊗̂π`2, but its complement is dense too!
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Non-norm attaining tensors may be dense!

Set u ∈ c0⊗̂π`2 attaining its projective norm.

Write u =
∑∞

n=1 xn ⊗ yn with
‖u‖π =

∑∞
n=1 ‖xn‖‖yn‖.

Let T ∈ B(c0 × `2) = L(c0, `2) with∑∞
n=1 ‖xn‖‖yn‖ = ‖u‖π = T (u) =

∑∞
n=1 T (xn)(yn). Then T attains its

norm at xn for every n.
A result of Lindenstrauss implies that T (X ) is finite-dimensional.
Moreover, T (xn)(yn) = ‖xn‖‖yn‖ implies T (xn) = ‖xn‖yn (via the
identification `∗2 = `2).
This implies yn ∈ T (X ) for every n. From there it is proved that
u ∈ c0 ⊗ `2.

Example
NAπ(c0⊗̂π`2) ⊆ c0 ⊗ `2. The element u =

∑∞
n=1

1
2n en ⊗ en ∈ c0⊗̂π`2 does not

attain its projective norm. From there, not norm attaining elements are dense.
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Moreover, T (xn)(yn) = ‖xn‖‖yn‖ implies T (xn) = ‖xn‖yn (via the
identification `∗2 = `2).
This implies yn ∈ T (X ) for every n. From there it is proved that
u ∈ c0 ⊗ `2.

Example
NAπ(c0⊗̂π`2) ⊆ c0 ⊗ `2. The element u =

∑∞
n=1

1
2n en ⊗ en ∈ c0⊗̂π`2 does not

attain its projective norm. From there, not norm attaining elements are dense.
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Questions on projective norm-attainment

Question 1
If X is reflexive and Y is finite-dimensional, does NA(X ⊗̂πY ) = X ⊗̂πY?

If X is not reflexive, the answer is no (X = L1(T), Y = R2).

Question 2
When does X ⊗̂πY \ NAπ(X ⊗̂πY ) is dense?

It is possible that if X depends upon finitely-many coordinates and Y ∗ is stricly
convex then NAπ(X ⊗̂πY ) ⊆ X ⊗ Y .

Question 3
May NAπ(X ⊗̂πY ) be residual or even contain an open dense set?
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Happy birthday!
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