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Subspaces in a projective tensor product

Let X ,Y be Banach spaces and let W ⊆ X and Z ⊆ Y subspaces.

It is natural
to wonder when W ⊗̂πZ is a subspace of X ⊗̂πY . That is, given u ∈W ⊗ Z , we
wonder when ‖u‖X⊗̂πY = ‖u‖W ⊗̂πZ .
It is clear that the set of representations of u as combinations of elements of
W and Z is smaller as the set of representations of u as combinations of
elements of X and Y . Taking inf, we have the inequality

‖u‖X⊗̂πY ≤ ‖u‖W ⊗̂πZ .

What about the converse?

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in Banach spaces II July 2023 3 / 18



Subspaces in a projective tensor product

Let X ,Y be Banach spaces and let W ⊆ X and Z ⊆ Y subspaces. It is natural
to wonder when W ⊗̂πZ is a subspace of X ⊗̂πY .

That is, given u ∈W ⊗ Z , we
wonder when ‖u‖X⊗̂πY = ‖u‖W ⊗̂πZ .
It is clear that the set of representations of u as combinations of elements of
W and Z is smaller as the set of representations of u as combinations of
elements of X and Y . Taking inf, we have the inequality

‖u‖X⊗̂πY ≤ ‖u‖W ⊗̂πZ .

What about the converse?

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in Banach spaces II July 2023 3 / 18



Subspaces in a projective tensor product

Let X ,Y be Banach spaces and let W ⊆ X and Z ⊆ Y subspaces. It is natural
to wonder when W ⊗̂πZ is a subspace of X ⊗̂πY . That is, given u ∈W ⊗ Z , we
wonder when ‖u‖X⊗̂πY = ‖u‖W ⊗̂πZ .

It is clear that the set of representations of u as combinations of elements of
W and Z is smaller as the set of representations of u as combinations of
elements of X and Y . Taking inf, we have the inequality

‖u‖X⊗̂πY ≤ ‖u‖W ⊗̂πZ .

What about the converse?

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in Banach spaces II July 2023 3 / 18



Subspaces in a projective tensor product

Let X ,Y be Banach spaces and let W ⊆ X and Z ⊆ Y subspaces. It is natural
to wonder when W ⊗̂πZ is a subspace of X ⊗̂πY . That is, given u ∈W ⊗ Z , we
wonder when ‖u‖X⊗̂πY = ‖u‖W ⊗̂πZ .
It is clear that the set of representations of u as combinations of elements of
W and Z is smaller as the set of representations of u as combinations of
elements of X and Y .

Taking inf, we have the inequality

‖u‖X⊗̂πY ≤ ‖u‖W ⊗̂πZ .

What about the converse?

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in Banach spaces II July 2023 3 / 18



Subspaces in a projective tensor product

Let X ,Y be Banach spaces and let W ⊆ X and Z ⊆ Y subspaces. It is natural
to wonder when W ⊗̂πZ is a subspace of X ⊗̂πY . That is, given u ∈W ⊗ Z , we
wonder when ‖u‖X⊗̂πY = ‖u‖W ⊗̂πZ .
It is clear that the set of representations of u as combinations of elements of
W and Z is smaller as the set of representations of u as combinations of
elements of X and Y . Taking inf, we have the inequality

‖u‖X⊗̂πY ≤ ‖u‖W ⊗̂πZ .

What about the converse?

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in Banach spaces II July 2023 3 / 18



Subspaces in a projective tensor product

Let X ,Y be Banach spaces and let W ⊆ X and Z ⊆ Y subspaces. It is natural
to wonder when W ⊗̂πZ is a subspace of X ⊗̂πY . That is, given u ∈W ⊗ Z , we
wonder when ‖u‖X⊗̂πY = ‖u‖W ⊗̂πZ .
It is clear that the set of representations of u as combinations of elements of
W and Z is smaller as the set of representations of u as combinations of
elements of X and Y . Taking inf, we have the inequality

‖u‖X⊗̂πY ≤ ‖u‖W ⊗̂πZ .

What about the converse?

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in Banach spaces II July 2023 3 / 18



Isomorphic subspaces and tensor products

Theorem
Let W ⊆ X, Z ⊆ Y subspaces and C ≥ 1.

TFAE:
1 ‖u‖W ⊗̂πZ ≤ C‖u‖X⊗̂πY for every u ∈W ⊗ Z.
2 Every bounded bilinear form B ∈ B(W × Z ) admits an extension

B̃ ∈ B(X × Y ) such that ‖B̃‖ ≤ C‖B‖.

(1)⇒(2). Set B ∈ B(W × Z ). Given u ∈W ⊗ Z

B(u) ≤ ‖B‖‖u‖W ⊗̂πZ ≤ ‖B‖C‖u‖X⊗̂πY .

Then B acts linear and continuously on (W ⊗ Z , ‖ · ‖X⊗̂πY ) and its norm is
≤ C‖B‖. By Hahn-Banach theorem there exists B̃ ∈ (X ⊗̂πY )∗ = B(X × Y )
extending B and norm preserving.
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Subspaces of projective tensor products and
extension of operators

Corollary
Let X, Y Banach spaces and W ⊆ X subspace. TFAE:

1 ‖u‖W ⊗̂πY ≤ C‖u‖X⊗̂πY for every u ∈W ⊗ Y.

2 Every T ∈ L(W ,Y ∗) admits an extension T̃ ∈ L(X ,Y ∗) s.t. ‖T̃‖ ≤ C‖T‖.

It seems difficult that the above property of extension of operators may always
happen. Let us have a look to a closer look using (2).
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Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)
Let X be a Banach space and W subspace.

TFAE:
(1) ∀Y , every bounded linear T ∈ L(W ,Y ∗) admits an extension

T̃ ∈ L(X ,Y ∗) such that ‖T̃‖ ≤ C‖T‖.
(2) ∃ S : X −→W ∗∗ extending the canonical operator J : W −→W ∗∗ with
‖S‖ ≤ C.

(3) There exists a linear Hahn-Banach extension operator, that is,
ϕ : W ∗ −→ X ∗ with ‖ϕ‖ ≤ C and such that ϕ(w∗)(w) = w∗(w).

(4) There exists a projection P : X ∗∗ −→W ∗∗ with ‖P‖ ≤ C.
(5) For every finite-dimensional E ⊆ X and every ε > 0 there exists a

T : E −→W with T (e) = e ∀e ∈ E ∩W and ‖T‖ ≤ C + ε.

(1)⇒(2) is a particular case. (2)⇒(3) just define ϕ := S∗|W∗ . (3)⇒(4) follows
taking P = ϕ∗.
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Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)
Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection P : X ∗∗ −→W ∗∗ with ‖P‖ ≤ C.
(5) For every finite-dimensional E ⊆ X and every ε > 0 there exists a

T : E −→W with T (e) = e ∀e ∈ E ∩W and ‖T‖ ≤ C + ε.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)
Let X be a Banach space. Then, for every finite-dimensional subspaces
E ⊆ X ∗∗ and F ⊆ X ∗, ε > 0 there exists T : E −→ X such that:

1 T (e) = e e ∈ E ∩ X,
2 (1− ε)‖e‖ ≤ ‖T (e)‖ ≤ (1 + ε)‖e‖, e ∈ E,
3 x∗(T (x∗∗)) = x∗∗(x∗), x∗ ∈ F , x∗∗ ∈ E.
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A Lindenstrauss compactness argument

Theorem (Definition of (C) locally complemented subspace)
Let X be a Banach space and W subspace. TFAE:
(1) For every Banach space Y , every bounded linear operator T ∈ L(W ,Y ∗)

admits an extension T̃ ∈ L(X ,Y ∗) such that ‖T̃‖ ≤ C‖T‖.
(5) For every finite-dimensional E ⊆ X and every ε > 0 there exists a

T : E −→W with T (e) = e ∀e ∈ E ∩W and ‖T‖ ≤ C + ε.

Let Y Banach space and T : W −→ Y ∗ bounded. Given E ⊆ X finite-dim and
ε > 0 set P(E,ε) : E −→W the operator described in (5). We would want,
somehow, to glue the “local operators” T ◦ P(E,ε). Define

T(E,ε)(x) :=

{
T (P(E,ε))(x) if x ∈ E ,

0 otherwise

It is not linear but, somehow, it is “more and more linear” when E grows.
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A Lindenstrauss compactness argument

T(E,ε)(x) :=

{
T (P(E,ε))(x) if x ∈ E ,

0 otherwise

Set Γ := {(E , ε) : E ⊆ X fin dim ,0 < ε < 1}. Directed with the order
(E , ε) ≤ (F , δ) iff E ⊂ F and δ < ε. Given (E , ε) ∈ Γ, if x /∈ E then
T(E,ε)(x) = 0. Otherwise

‖T(E,ε)(x)‖ ≤ ‖T‖‖P(E,ε)‖‖x‖ ≤ (C + ε)‖T‖‖x‖.

This means T(E,ε)(x) ∈ (C + ε)‖T‖‖x‖BY∗ . So

T(E,ε) ∈
∏
x∈X

((C + 1)‖T‖‖x‖BY∗ ,w∗),

which is a compact topological space by Tychonoff theorem. Take T̃ a cluster
point of the net (T(E,ε))(E,ε)∈Γ, and it satisfies the desired requirements.
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Examples where projective tensor does not respect
subspaces. Isomorphic case.

Corollary
Let X and Y be two Banach spaces and let W ⊆ X be a subspace. The
following assertions are equivalent:

1 ‖u‖W ⊗̂πY ≤ C‖u‖X⊗̂πY for every u ∈W ⊗ Y.
2 Every bounded linear operator T ∈ L(W ,Y ∗) admits an extension

T̃ ∈ L(X ,Y ∗) such that ‖T̃‖ ≤ C‖T‖.

We are able to find X ,Y ,W such that W ⊗̂πY is not isomorphically a
subspace of X ⊗̂πY . Take a reflexive Banach space X not isomorphic to a
Hilbert space. There exists a subspace Y ⊆ X for which there is no projection
P : X −→ Y . This means that the operator i : Y −→ Y does not admit any
continuous extension to P : X −→ Y . Hence Y ⊗̂πY ∗ is not isomorphically a
subspace of X ⊗̂πY ∗.
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Examples where projective tensor does not respect
subspaces. Finite-dimensional case.

Theorem
Let X be an infinite-dimensional Banach space with the property that there
exists λ ≥ 1 so that for every finite-dimensional subspace E of X there exists
a projection P : X −→ E with ‖P‖ ≤ λ. Then X is isomorphic to a Hilbert
space and, indeed, it is 4λ2

Take an infinite-dimensional Banach space X which is not isomorphic to a
Hilbert space and let λ > 1. Then there exists a subspace E ⊆ X such that,
for every bounded projection P : X −→ E it follows ‖P‖ > λ. Then there exists
a finite-dimensional subspace E ⊆ F ⊆ X such that, for every bounded
projection P : F −→ E , then ‖P‖ > λ.
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Examples where projective tensor does not respect
subspaces. Finite-dimensional case

Then there exists a subspace E ⊆ X such that, for every bounded projection
P : X −→ E it follows ‖P‖ > λ.

Then there exists a finite-dimensional
subspace E ⊆ F ⊆ X such that, for every bounded projection P : F −→ E ,
then ‖P‖ > λ.
If not, then for every E ⊆ F ⊆ X there would exists a bounded projection
PF : F −→ E with ‖PF‖ ≤ λ. Set Γ := {F ⊆ X : E ⊆ F ,dim(F ) <∞} ordered
with the order inclusion. Define

TF (x) :=

{
PF (x) if x ∈ F ,

0 otherwise

Observe TF ∈
∏

x∈X
(λBE , ‖ · ‖), which is compact. Take a cluster point in the

above compact space, say P. It can be proved that P : X −→ E is a linear
projection and ‖P‖ ≤ λ.
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Examples where projective tensor does not respect
subspaces. Finite-dimensional case

Consequently, given the identity operator i : E −→ E , for any extension
P : F −→ E we get ‖P‖ ≥ λ.

This implies that

‖u‖E⊗̂πE∗ ≤ C‖u‖F⊗̂πE∗ ∀u ∈ E⊗̂πE∗ ⇒ C > λ.

We have proved the following result.

Theorem
Let X be an infinite-dimensional Banach space which is not isomorphic to a
Hilbert space. Then, for every λ > 0 there are E ⊆ F ⊆ X finite dimensional
such that

‖u‖E⊗̂πE∗ ≤ C‖u‖F⊗̂πE∗ ∀u ∈ E⊗̂πE∗ ⇒ C > λ.
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A positive known result

Corollary
If X and Y are Banach space then X ⊗̂πY is isometrically a subspace of
X ∗∗⊗̂πY .

The principle of local reflexivity establishes X is 1-locally complemented in
X ∗∗. This implies that for any Banach space Y and every bounded operator
T : X −→ Y ∗ there exists a norm-extending extension T̂ : X ∗∗ −→ Y ∗. This
finishes the proof.
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Tensor product of operators

Given two bounded linear operators between Banach spaces T : X −→ Z and
S : Y −→W

, observe that the mapping ϕ : X × Y −→ Z ⊗̂πW defined by

ϕ(x , y) := T (x)⊗ S(y)

is linear and bounded. Indeed, it is not difficult to prove that ‖ϕ‖ = ‖T‖‖S‖.
By the universal property there exists a bounded linear operator
T ⊗ S : X ⊗̂πY −→ Z ⊗̂πW satisfying that

(T ⊗ S)(x ⊗ y) = ϕ(x , y) = T (x)⊗ S(y).

In general, if T and S are onto linear isomorphisms, then so is T ⊗ S. For into
isomorphisms the above result does not follow. However, the above operators
will reveal a different better behaviour which justifies the name “projective” for
the π-norm.
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Tensor products of projections

Proposition
If P : X −→ Z and Q : Y −→W is a projection, then
P ⊗Q : X ⊗̂πY −→ Z ⊗̂πW is a projection.

In particular, if Z ⊆ X and W ⊆ Y
are complemented subspaces, then so is Z ⊗̂πW ⊆ X ⊗̂πY.

It is immediate that (P ⊗Q)2 = P ⊗Q, and that the image is Z ⊗̂πW . In order
to see that Z ⊗̂πW is a subspace of X ⊗̂πY , select u ∈ Z ⊗̂πW . Then

‖u‖X⊗̂πY ≤ ‖u‖Z⊗̂πW = ‖(P ⊗Q)(u)‖Z⊗̂πW ≤ ‖P‖‖Q‖‖u‖X⊗̂πY .
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