Geometry of tensor products and bilinear mappings in Banach spaces II

Abraham Rueda Zoca XXII Lluís Santaló School 2023 Linear and non-linear analysis in Banach spaces

Universidad de Granada Departamento de Análisis Matemático

UNIVERSIDAD DE GRANADA

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in I

My research is supported by MCIN/AEI/10.13039/501100011033: Grant PID2021-122126NB-C31; by Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22, and by Junta de Andalucía: Grants FQM-0185.

Subspaces in a projective tensor product

Let *X*, *Y* be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces.

Let *X*, *Y* be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$.

Let *X*, *Y* be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $\|u\|_{X \widehat{\otimes}_{\pi} Y} = \|u\|_{W \widehat{\otimes}_{\pi} Z}$.

Let *X*, *Y* be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $\|u\|_{X \widehat{\otimes}_{\pi} Y} = \|u\|_{W \widehat{\otimes}_{\pi} Z}$.

It is clear that the set of representations of u as combinations of elements of W and Z is smaller as the set of representations of u as combinations of elements of X and Y.

Let *X*, *Y* be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $||u||_{X \widehat{\otimes}_{\pi} Y} = ||u||_{W \widehat{\otimes}_{\pi} Z}$.

It is clear that the set of representations of u as combinations of elements of W and Z is smaller as the set of representations of u as combinations of elements of X and Y. Taking inf, we have the inequality

 $\|u\|_{X\widehat{\otimes}_{\pi}Y} \leq \|u\|_{W\widehat{\otimes}_{\pi}Z}.$

Let *X*, *Y* be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $\|u\|_{X \widehat{\otimes}_{\pi} Y} = \|u\|_{W \widehat{\otimes}_{\pi} Z}$.

It is clear that the set of representations of u as combinations of elements of W and Z is smaller as the set of representations of u as combinations of elements of X and Y. Taking inf, we have the inequality

$$\|u\|_{X\widehat{\otimes}_{\pi}Y} \leq \|u\|_{W\widehat{\otimes}_{\pi}Z}.$$

What about the converse?

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in I

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \ge 1$. TFAE: $||u||_{W \otimes_{-Z}} \le C ||u||_{X \otimes_{-Y}}$ for every $u \in W \otimes Z$.

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

- $\ \, \bullet \ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \text{ for every } u \in W \otimes Z.$
- Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

 $\ \, \bullet \ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \text{ for every } u \in W \otimes Z.$

Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(1) \Rightarrow (2). Set $B \in B(W \times Z)$.

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

$$\ \, \bullet \ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \text{ for every } u \in W \otimes Z.$$

Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(1)
$$\Rightarrow$$
(2). Set $B \in B(W \times Z)$. Given $u \in W \otimes Z$

$$B(u) \leq \|B\| \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq \|B\|C\|u\|_{X\widehat{\otimes}_{\pi}Y}$$

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

$$\ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \text{ for every } u \in W \otimes Z.$$

Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(1)⇒(2). Set
$$B \in B(W \times Z)$$
. Given $u \in W \otimes Z$

$$B(u) \leq \|B\| \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq \|B\|C\|u\|_{X\widehat{\otimes}_{\pi}Y}.$$

Then *B* acts linear and continuously on $(W \otimes Z, \|\cdot\|_{X \otimes_{\pi} Y})$ and its norm is $\leq C \|B\|$.

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

$$\ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \text{ for every } u \in W \otimes Z.$$

Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(1)
$$\Rightarrow$$
(2). Set $B \in B(W \times Z)$. Given $u \in W \otimes Z$

$$B(u) \leq \|B\| \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq \|B\|C\|u\|_{X\widehat{\otimes}_{\pi}Y}.$$

Then *B* acts linear and continuously on $(W \otimes Z, \|\cdot\|_{X \otimes_{\pi} Y})$ and its norm is $\leq C \|B\|$. By Hahn-Banach theorem there exists $\tilde{B} \in (X \otimes_{\pi} Y)^* = B(X \times Y)$ extending *B* and norm preserving.

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

- $\ \, \bullet \ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \ \, \text{for every} \ \, u \in W \otimes Z.$
- ② Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(2)⇒(1).

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

- $\ \, \bullet \ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \ \, \text{for every} \ \, u \in W \otimes Z.$
- ② Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(2) \Rightarrow (1). Set $u \in W \otimes Z$ and take $B \in B(W \times Z)$ with ||B|| = 1 and $||u||_{W \otimes_{\pi} Z} = B(u)$.

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

- $\ \, \bullet \ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \ \, \text{for every} \ \, u \in W \otimes Z.$
- ② Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(2) \Rightarrow (1). Set $u \in W \otimes Z$ and take $B \in B(W \times Z)$ with ||B|| = 1 and $||u||_{W \otimes_{\pi} Z} = B(u)$. By (2) there exists $\tilde{B} \in B(X \times Y)$ with $||B|| \leq C$ extending B.

Let $W \subseteq X$, $Z \subseteq Y$ subspaces and $C \ge 1$. TFAE:

- $\ \, \bullet \ \, \|u\|_{W\widehat{\otimes}_{\pi}Z} \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y} \ \, \text{for every} \ \, u \in W \otimes Z.$
- ② Every bounded bilinear form B ∈ B(W × Z) admits an extension B̃ ∈ B(X × Y) such that ||B̃|| ≤ C||B||.

(2) \Rightarrow (1). Set $u \in W \otimes Z$ and take $B \in B(W \times Z)$ with ||B|| = 1 and $||u||_{W \otimes_{\pi} Z} = B(u)$. By (2) there exists $\tilde{B} \in B(X \times Y)$ with $||B|| \leq C$ extending B. Since \tilde{B} extends B we have

$$\|u\|_{W\widehat{\otimes}_{\pi}Z} = \widetilde{B}(u) \leq C \|u\|_{X\widehat{\otimes}_{\pi}Y}.$$

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:

2 Every $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ s.t. $\|\tilde{T}\| \leq C \|T\|$.

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:

2 Every $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ s.t. $\|\tilde{T}\| \leq C \|T\|$.

It seems difficult that the above property of extension of operators may always happen.

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:

2 Every $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ s.t. $\|\tilde{T}\| \leq C \|T\|$.

It seems difficult that the above property of extension of operators may always happen. Let us have a look to a closer look using (2).

Let X be a Banach space and W subspace. TFAE:

(1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.

- (1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (2) $\exists S : X \longrightarrow W^{**}$ extending the canonical operator $J : W \longrightarrow W^{**}$ with $||S|| \leq C$.

- (1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (2) $\exists S : X \longrightarrow W^{**}$ extending the canonical operator $J : W \longrightarrow W^{**}$ with $||S|| \leq C$.
- (3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^* \longrightarrow X^*$ with $\|\varphi\| \le C$ and such that $\varphi(w^*)(w) = w^*(w)$.

- (1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (2) $\exists S : X \longrightarrow W^{**}$ extending the canonical operator $J : W \longrightarrow W^{**}$ with $||S|| \leq C$.
- (3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^* \longrightarrow X^*$ with $\|\varphi\| \leq C$ and such that $\varphi(w^*)(w) = w^*(w)$.
- (4) There exists a projection $P : X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.

- (1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (2) $\exists S : X \longrightarrow W^{**}$ extending the canonical operator $J : W \longrightarrow W^{**}$ with $||S|| \leq C$.
- (3) There exists a linear Hahn-Banach extension operator, that is, φ : W^{*} → X^{*} with ||φ|| ≤ C and such that φ(w^{*})(w) = w^{*}(w).
- (4) There exists a projection $P : X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let X be a Banach space and W subspace. TFAE:

- (1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (2) $\exists S : X \longrightarrow W^{**}$ extending the canonical operator $J : W \longrightarrow W^{**}$ with $||S|| \leq C$.
- (3) There exists a linear Hahn-Banach extension operator, that is, φ : W^{*} → X^{*} with ||φ|| ≤ C and such that φ(w^{*})(w) = w^{*}(w).
- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

 $(1) \Rightarrow (2)$ is a particular case.

Let X be a Banach space and W subspace. TFAE:

- (1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (2) $\exists S : X \longrightarrow W^{**}$ extending the canonical operator $J : W \longrightarrow W^{**}$ with $||S|| \leq C$.
- (3) There exists a linear Hahn-Banach extension operator, that is, φ : W^{*} → X^{*} with ||φ|| ≤ C and such that φ(w^{*})(w) = w^{*}(w).
- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

(1) \Rightarrow (2) is a particular case. (2) \Rightarrow (3) just define $\varphi := S^*_{|W^*}$.

Let X be a Banach space and W subspace. TFAE:

- (1) $\forall Y$, every bounded linear $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (2) $\exists S : X \longrightarrow W^{**}$ extending the canonical operator $J : W \longrightarrow W^{**}$ with $||S|| \leq C$.
- (3) There exists a linear Hahn-Banach extension operator, that is, φ : W^{*} → X^{*} with ||φ|| ≤ C and such that φ(w^{*})(w) = w^{*}(w).
- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

(1) \Rightarrow (2) is a particular case. (2) \Rightarrow (3) just define $\varphi := S^*_{|W^*}$. (3) \Rightarrow (4) follows taking $P = \varphi^*$.

Let X be a Banach space and W subspace. TFAE:

- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a
 - $T: E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let X be a Banach space and W subspace. TFAE:

- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a
 - $T: E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Let X be a Banach space and W subspace. TFAE:

- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a
 - $T: E \longrightarrow W$ with $T(e) = e \ \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space.

Let X be a Banach space and W subspace. TFAE:

- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a
 - $T: E \longrightarrow W$ with $T(e) = e \ \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{**}$ and $F \subseteq X^*$, $\varepsilon > 0$ there exists $T : E \longrightarrow X$ such that:

Let X be a Banach space and W subspace. TFAE:

- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a
 - $T: E \longrightarrow W$ with $T(e) = e \ \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{**}$ and $F \subseteq X^*$, $\varepsilon > 0$ there exists $T : E \longrightarrow X$ such that: **1** $T(e) = e \ e \in E \cap X$,

Let X be a Banach space and W subspace. TFAE:

- (4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a
 - $T: E \longrightarrow W$ with $T(e) = e \ \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{**}$ and $F \subseteq X^*$, $\varepsilon > 0$ there exists $T : E \longrightarrow X$ such that:

$$T(e) = e \ e \in E \cap X,$$

$$(1-\varepsilon) \|\boldsymbol{e}\| \leq \|\boldsymbol{T}(\boldsymbol{e})\| \leq (1+\varepsilon) \|\boldsymbol{e}\|, \, \boldsymbol{e} \in \boldsymbol{E},$$

Let X be a Banach space and W subspace. TFAE:

(4) There exists a projection $P: X^{**} \longrightarrow W^{**}$ with $||P|| \leq C$.

- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a
 - $T: E \longrightarrow W$ with $T(e) = e \ \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{**}$ and $F \subseteq X^*$, $\varepsilon > 0$ there exists $T : E \longrightarrow X$ such that:

$$T(e) = e \ e \in E \cap X,$$

2
$$(1 - \varepsilon) \| \boldsymbol{e} \| \le \| T(\boldsymbol{e}) \| \le (1 + \varepsilon) \| \boldsymbol{e} \|, \, \boldsymbol{e} \in \boldsymbol{E},$$

◎
$$x^*(T(x^{**})) = x^{**}(x^*), x^* \in F, x^{**} \in E.$$

Let X be a Banach space and W subspace. TFAE:

- (1) For every Banach space Y, every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let X be a Banach space and W subspace. TFAE:

- (1) For every Banach space Y, every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let Y Banach space and $T: W \longrightarrow Y^*$ bounded.

Let X be a Banach space and W subspace. TFAE:

- (1) For every Banach space *Y*, every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let *Y* Banach space and $T: W \longrightarrow Y^*$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon > 0$ set $P_{(E,\varepsilon)}: E \longrightarrow W$ the operator described in (5).

Let X be a Banach space and W subspace. TFAE:

- (1) For every Banach space Y, every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let *Y* Banach space and $T: W \longrightarrow Y^*$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon > 0$ set $P_{(E,\varepsilon)}: E \longrightarrow W$ the operator described in (5). We would want, somehow, to glue the "local operators" $T \circ P_{(E,\varepsilon)}$.

Let X be a Banach space and W subspace. TFAE:

- (1) For every Banach space Y, every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let *Y* Banach space and $T: W \longrightarrow Y^*$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon > 0$ set $P_{(E,\varepsilon)}: E \longrightarrow W$ the operator described in (5). We would want, somehow, to glue the "local operators" $T \circ P_{(E,\varepsilon)}$. Define

$$\mathcal{T}_{(\mathcal{E},arepsilon)}(x) := \left\{egin{array}{cc} \mathcal{T}(\mathcal{P}_{(\mathcal{E},arepsilon)})(x) & ext{ if } x\in \mathcal{E}, \ 0 & ext{ otherwise } \end{array}
ight.$$

Let X be a Banach space and W subspace. TFAE:

- (1) For every Banach space *Y*, every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.
- (5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon > 0$ there exists a $T : E \longrightarrow W$ with $T(e) = e \quad \forall e \in E \cap W$ and $||T|| \leq C + \varepsilon$.

Let *Y* Banach space and $T: W \longrightarrow Y^*$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon > 0$ set $P_{(E,\varepsilon)}: E \longrightarrow W$ the operator described in (5). We would want, somehow, to glue the "local operators" $T \circ P_{(E,\varepsilon)}$. Define

$$\mathcal{T}_{(E,arepsilon)}(x) := \left\{egin{array}{cc} \mathcal{T}(P_{(E,arepsilon)})(x) & ext{ if } x \in E, \ 0 & ext{ otherwise } \end{array}
ight.$$

It is **not** linear but, somehow, it is "more and more linear" when *E* grows.

A Lindenstrauss compactness argument

$$T_{(E,\varepsilon)}(x) := \begin{cases} T(P_{(E,\varepsilon)})(x) & \text{if } x \in E, \\ 0 & \text{otherwise} \end{cases}$$

A Lindenstrauss compactness argument

$$\mathcal{T}_{(E,arepsilon)}(x) := \left\{egin{array}{cc} \mathcal{T}(P_{(E,arepsilon)})(x) & ext{ if } x\in E, \ 0 & ext{ otherwise } \end{array}
ight.$$

Set $\Gamma := \{ (E, \varepsilon) : E \subseteq X \text{ fin dim }, 0 < \varepsilon < 1 \}$. Directed with the order $(E, \varepsilon) \leq (F, \delta)$ iff $E \subset F$ and $\delta < \varepsilon$.

$$\mathcal{T}_{(E,arepsilon)}(x) := \left\{egin{array}{cc} \mathcal{T}(P_{(E,arepsilon)})(x) & ext{ if } x\in E, \ 0 & ext{ otherwise } \end{array}
ight.$$

$$\|T_{(E,\varepsilon)}(x)\| \leq \|T\| \|P_{(E,\varepsilon)}\| \|x\| \leq (C+\varepsilon) \|T\| \|x\|.$$

$$\mathcal{T}_{(\mathcal{E},arepsilon)}(x) := \left\{egin{array}{cc} \mathcal{T}(P_{(\mathcal{E},arepsilon)})(x) & ext{ if } x\in \mathcal{E}, \ 0 & ext{ otherwise } \end{array}
ight.$$

$$\|T_{(E,\varepsilon)}(x)\| \leq \|T\| \|P_{(E,\varepsilon)}\| \|x\| \leq (C+\varepsilon) \|T\| \|x\|.$$

This means $T_{(E,\varepsilon)}(x) \in (C+\varepsilon) ||T|| ||x|| B_{Y^*}$.

$$\mathcal{T}_{(\mathcal{E},arepsilon)}(x) := \left\{egin{array}{cc} \mathcal{T}(\mathcal{P}_{(\mathcal{E},arepsilon)})(x) & ext{ if } x\in \mathcal{E}, \ 0 & ext{ otherwise } \end{array}
ight.$$

$$\|T_{(E,\varepsilon)}(x)\| \leq \|T\| \|P_{(E,\varepsilon)}\| \|x\| \leq (C+\varepsilon) \|T\| \|x\|.$$

This means $T_{(E,\varepsilon)}(x) \in (C+\varepsilon) ||T|| ||x|| B_{Y^*}$. So

$$T_{(E,\varepsilon)} \in \prod_{x \in X} ((C+1) ||T|| ||x|| B_{Y^*}, w^*),$$

which is a compact topological space by Tychonoff theorem.

$$\mathcal{T}_{(\mathcal{E},arepsilon)}(x) := \left\{egin{array}{cc} \mathcal{T}(P_{(\mathcal{E},arepsilon)})(x) & ext{ if } x\in \mathcal{E}, \ 0 & ext{ otherwise } \end{array}
ight.$$

$$\|T_{(E,\varepsilon)}(x)\| \leq \|T\| \|P_{(E,\varepsilon)}\| \|x\| \leq (C+\varepsilon) \|T\| \|x\|.$$

This means $T_{(E,\varepsilon)}(x) \in (C+\varepsilon) ||T|| ||x|| B_{Y^*}$. So

$$T_{(E,\varepsilon)} \in \prod_{x \in X} ((C+1) ||T|| ||x|| B_{Y^*}, w^*),$$

which is a compact topological space by Tychonoff theorem. Take \tilde{T} a cluster point of the net $(T_{(E,\varepsilon)})_{(E,\varepsilon)\in\Gamma}$, and it satisfies the desired requirements.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:

- 2 Every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:

- 2 Every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.

We are able to find *X*, *Y*, *W* such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:

2 Every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.

We are able to find *X*, *Y*, *W* such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space *X* not isomorphic to a Hilbert space.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:

2 Every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space X not isomorphic to a Hilbert space. There exists a subspace $Y \subseteq X$ for which there is no projection $P: X \longrightarrow Y$.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:

2 Every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space X not isomorphic to a Hilbert space. There exists a subspace $Y \subseteq X$ for which there is no projection $P: X \longrightarrow Y$. This means that the operator $i: Y \longrightarrow Y$ does not admit any continuous extension to $P: X \longrightarrow Y$.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:

2 Every bounded linear operator $T \in L(W, Y^*)$ admits an extension $\tilde{T} \in L(X, Y^*)$ such that $\|\tilde{T}\| \leq C \|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space X not isomorphic to a Hilbert space. There exists a subspace $Y \subseteq X$ for which there is no projection $P: X \longrightarrow Y$. This means that the operator $i: Y \longrightarrow Y$ does not admit any continuous extension to $P: X \longrightarrow Y$. Hence $Y \widehat{\otimes}_{\pi} Y^*$ is **not** isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y^*$.

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \ge 1$ so that for every finite-dimensional subspace E of X there exists a projection $P: X \longrightarrow E$ with $||P|| \le \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4\lambda^2$

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \ge 1$ so that for every finite-dimensional subspace E of X there exists a projection $P : X \longrightarrow E$ with $||P|| \le \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4\lambda^2$

Take an infinite-dimensional Banach space *X* which is not isomorphic to a Hilbert space and let $\lambda > 1$.

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \ge 1$ so that for every finite-dimensional subspace E of X there exists a projection $P : X \longrightarrow E$ with $||P|| \le \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4\lambda^2$

Take an infinite-dimensional Banach space *X* which is not isomorphic to a Hilbert space and let $\lambda > 1$. Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P : X \longrightarrow E$ it follows $||P|| > \lambda$.

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \ge 1$ so that for every finite-dimensional subspace E of X there exists a projection $P : X \longrightarrow E$ with $||P|| \le \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4\lambda^2$

Take an infinite-dimensional Banach space *X* which is not isomorphic to a Hilbert space and let $\lambda > 1$. Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P : X \longrightarrow E$ it follows $||P|| > \lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P : F \longrightarrow E$, then $||P|| > \lambda$.

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $||P|| > \lambda$.

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $||P|| > \lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $||P|| > \lambda$.

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $||P|| > \lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $||P|| > \lambda$. If not, then for every $E \subseteq F \subseteq X$ there would exists a bounded projection $P_F: F \longrightarrow E$ with $||P_F|| \le \lambda$.

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $||P|| > \lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $||P|| > \lambda$.

If not, then for every $E \subseteq F \subseteq X$ there would exists a bounded projection $P_F : F \longrightarrow E$ with $||P_F|| \le \lambda$. Set $\Gamma := \{F \subseteq X : E \subseteq F, dim(F) < \infty\}$ ordered with the order inclusion. Define

$$T_F(x) := \left\{ egin{array}{cc} P_F(x) & ext{if } x \in F, \ 0 & ext{otherwise} \end{array}
ight.$$

Observe $T_F \in \prod_{x \in X} (\lambda B_E, \|\cdot\|)$, which is compact.

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $||P|| > \lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $||P|| > \lambda$.

If not, then for every $E \subseteq F \subseteq X$ there would exists a bounded projection $P_F : F \longrightarrow E$ with $||P_F|| \le \lambda$. Set $\Gamma := \{F \subseteq X : E \subseteq F, dim(F) < \infty\}$ ordered with the order inclusion. Define

$$T_F(x) := \left\{ egin{array}{cc} P_F(x) & ext{if } x \in F, \ 0 & ext{otherwise} \end{array}
ight.$$

Observe $T_F \in \prod_{x \in X} (\lambda B_E, \|\cdot\|)$, which is compact. Take a cluster point in the above compact space, say *P*. It can be proved that $P : X \longrightarrow E$ is a linear projection and $\|P\| \le \lambda$.

Consequently, given the identity operator $i : E \longrightarrow E$, for any extension $P : F \longrightarrow E$ we get $||P|| \ge \lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Consequently, given the identity operator $i : E \longrightarrow E$, for any extension $P : F \longrightarrow E$ we get $||P|| \ge \lambda$. This implies that

$$\|u\|_{E\widehat{\otimes}_{\pi}E^*} \leq C \|u\|_{F\widehat{\otimes}_{\pi}E^*} \ \forall u \in E\widehat{\otimes}_{\pi}E^* \Rightarrow C > \lambda.$$

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Consequently, given the identity operator $i : E \longrightarrow E$, for any extension $P : F \longrightarrow E$ we get $||P|| \ge \lambda$. This implies that

$$\|u\|_{E\widehat{\otimes}_{\pi}E^*} \leq C \|u\|_{F\widehat{\otimes}_{\pi}E^*} \ \forall u \in E\widehat{\otimes}_{\pi}E^* \Rightarrow C > \lambda.$$

We have proved the following result.

Theorem

Let X be an infinite-dimensional Banach space which is not isomorphic to a Hilbert space. Then, for every $\lambda > 0$ there are $E \subseteq F \subseteq X$ finite dimensional such that

$$\|u\|_{E\widehat{\otimes}_{\pi}E^*} \leq C \|u\|_{F\widehat{\otimes}_{\pi}E^*} \ \forall u \in E\widehat{\otimes}_{\pi}E^* \Rightarrow C > \lambda.$$

A positive known result

Abraham Rueda Zoca (Universidad de Granada) Geometry of tensor products and bilinear mappings in I

If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{**} \widehat{\otimes}_{\pi} Y$.

If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{**} \widehat{\otimes}_{\pi} Y$.

The principle of local reflexivity establishes X is 1-locally complemented in X^{**} .

If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{**} \widehat{\otimes}_{\pi} Y$.

The principle of local reflexivity establishes *X* is 1-locally complemented in X^{**} . This implies that for any Banach space *Y* and every bounded operator $T: X \longrightarrow Y^*$ there exists a norm-extending extension $\hat{T}: X^{**} \longrightarrow Y^*$.

If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{**} \widehat{\otimes}_{\pi} Y$.

The principle of local reflexivity establishes *X* is 1-locally complemented in X^{**} . This implies that for any Banach space *Y* and every bounded operator $T: X \longrightarrow Y^*$ there exists a norm-extending extension $\hat{T}: X^{**} \longrightarrow Y^*$. This finishes the proof.

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$

$$\varphi(\mathbf{x},\mathbf{y}):=T(\mathbf{x})\otimes S(\mathbf{y})$$

is linear and bounded.

$$\varphi(\mathbf{x},\mathbf{y}):=T(\mathbf{x})\otimes S(\mathbf{y})$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\| = \|T\| \|S\|$.

$$\varphi(\mathbf{x},\mathbf{y}):=T(\mathbf{x})\otimes S(\mathbf{y})$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\| = \|T\| \|S\|$. By the universal property there exists a bounded linear operator $T \otimes S : X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$(T \otimes S)(x \otimes y) = \varphi(x, y) = T(x) \otimes S(y).$$

$$\varphi(\mathbf{x},\mathbf{y}):=T(\mathbf{x})\otimes S(\mathbf{y})$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\| = \|T\| \|S\|$. By the universal property there exists a bounded linear operator $T \otimes S : X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$(T \otimes S)(x \otimes y) = \varphi(x, y) = T(x) \otimes S(y).$$

In general, if T and S are onto linear isomorphisms, then so is $T \otimes S$.

$$\varphi(\mathbf{x},\mathbf{y}):=T(\mathbf{x})\otimes S(\mathbf{y})$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\| = \|T\| \|S\|$. By the universal property there exists a bounded linear operator $T \otimes S : X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$(T \otimes S)(x \otimes y) = \varphi(x, y) = T(x) \otimes S(y).$$

In general, if T and S are onto linear isomorphisms, then so is $T \otimes S$. For into isomorphisms the above result does not follow.

$$\varphi(\mathbf{x},\mathbf{y}):=T(\mathbf{x})\otimes S(\mathbf{y})$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\| = \|T\| \|S\|$. By the universal property there exists a bounded linear operator $T \otimes S : X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$(T \otimes S)(x \otimes y) = \varphi(x, y) = T(x) \otimes S(y).$$

In general, if T and S are onto linear isomorphisms, then so is $T \otimes S$. For into isomorphisms the above result does not follow. However, the above operators will reveal a different better behaviour which justifies the name "projective" for the π -norm.

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then $P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection.

If $P : X \longrightarrow Z$ and $Q : Y \longrightarrow W$ is a projection, then $P \otimes Q : X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then $P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^2 = P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$.

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then $P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^2 = P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$.

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then $P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^2 = P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$. Then

$$\|u\|_{X\widehat{\otimes}_{\pi}Y} \leq \|u\|_{Z\widehat{\otimes}_{\pi}W}$$

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then $P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^2 = P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$. Then

$$\|u\|_{X\widehat{\otimes}_{\pi}Y} \leq \|u\|_{Z\widehat{\otimes}_{\pi}W} = \|(P \otimes Q)(u)\|_{Z\widehat{\otimes}_{\pi}W}$$

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then $P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^2 = P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$. Then

$$\|u\|_{X\widehat{\otimes}_{\pi}Y} \leq \|u\|_{Z\widehat{\otimes}_{\pi}W} = \|(P \otimes Q)(u)\|_{Z\widehat{\otimes}_{\pi}W} \leq \|P\|\|Q\|\|u\|_{X\widehat{\otimes}_{\pi}Y}.$$

- F. Albiac, N.J. Kalton, *Topics in Banach Space Theory*, Springer Inc. (2006).
- M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, *Banach space theory*, Springer Science+Business Media, LLC 2011.
- N. J. Kalton, *Locally complemented subspaces of* \mathcal{L}_p *-spaces for* 0 , Math. Nach.**115**(1984), 71–97.
- J. Lindenstrauss and H. P. Rosenthal, *The* \mathcal{L}_p *spaces*, Isr. J. Math. **7**, 4 (1969), 325–349.
- T. S. S. R. K. Rao, *On ideals in Banach spaces*, Rocky J. Math. **31**, 2 (2001), 595–609.
- R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 2002.