Geometry of tensor products and bilinear mappings in Banach spaces II

Abraham Rueda Zoca XXII Lluís Santaló School 2023 Linear and non-linear analysis in Banach spaces

Universidad de Granada
Departamento de Análisis Matemático

Support

My research is supported by MCIN/AEI/10.13039/501100011033: Grant PID2021-122126NB-C31; by Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22, and by Junta de Andalucía: Grants FQM-0185.
f SéNeCa ${ }^{(+)}$

Subspaces in a projective tensor product

Let X, Y be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces.

Subspaces in a projective tensor product

Let X, Y be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$.

Subspaces in a projective tensor product

Let X, Y be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $\|u\|_{X \widehat{\otimes}_{\pi} Y}=\|u\|_{W \widehat{\otimes}_{\pi} Z}$.

Subspaces in a projective tensor product

Let X, Y be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $\|u\|_{X \widehat{\otimes}_{\pi} Y}=\|u\|_{W \widehat{\otimes}_{\pi} Z}$. It is clear that the set of representations of u as combinations of elements of W and Z is smaller as the set of representations of u as combinations of elements of X and Y.

Subspaces in a projective tensor product

Let X, Y be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $\|u\|_{X \widehat{\otimes}_{\pi} Y}=\|u\|_{W \widehat{\otimes}_{\pi} Z}$. It is clear that the set of representations of u as combinations of elements of W and Z is smaller as the set of representations of u as combinations of elements of X and Y. Taking inf, we have the inequality

$$
\|u\|_{X \widehat{\otimes}_{\pi} Y} \leq\|u\|_{W \widehat{\otimes}_{\pi} Z}
$$

Subspaces in a projective tensor product

Let X, Y be Banach spaces and let $W \subseteq X$ and $Z \subseteq Y$ subspaces. It is natural to wonder when $W \widehat{\otimes}_{\pi} Z$ is a subspace of $X \widehat{\otimes}_{\pi} Y$. That is, given $u \in W \otimes Z$, we wonder when $\|u\|_{X \widehat{\otimes}_{\pi} Y}=\|u\|_{W \widehat{\otimes}_{\pi} Z}$. It is clear that the set of representations of u as combinations of elements of W and Z is smaller as the set of representations of u as combinations of elements of X and Y. Taking inf, we have the inequality

$$
\|u\|_{X \widehat{\otimes}_{\pi} Y} \leq\|u\|_{W \widehat{\otimes}_{\pi} Z}
$$

What about the converse?

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} z} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Z$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Z} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} z} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
$(1) \Rightarrow(2)$. Set $B \in B(W \times Z)$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Z} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
(1) $\Rightarrow(2)$. Set $B \in B(W \times Z)$. Given $u \in W \otimes Z$

$$
B(u) \leq\|B\|\|u\|_{W \widehat{\otimes}_{\pi} z} \leq\|B\| C\|u\|_{X \widehat{\otimes}_{\pi} Y} .
$$

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} z} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
$(1) \Rightarrow(2)$. Set $B \in B(W \times Z)$. Given $u \in W \otimes Z$

$$
B(u) \leq\|B\|\|u\|_{W \widehat{\otimes}_{\pi} z} \leq\|B\| C\|u\|_{X \widehat{\otimes}_{\pi} Y} .
$$

Then B acts linear and continuously on $\left(W \otimes Z,\|\cdot\|_{X \widehat{\otimes}_{\pi} Y}\right)$ and its norm is $\leq C\|B\|$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} z} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
(1) $\Rightarrow(2)$. Set $B \in B(W \times Z)$. Given $u \in W \otimes Z$

$$
B(u) \leq\|B\|\|u\|_{W \widehat{\otimes}_{\pi} z} \leq\|B\| C\|u\|_{X \widehat{\otimes}_{\pi} Y} .
$$

Then B acts linear and continuously on $\left(W \otimes Z,\|\cdot\|_{X \widehat{\otimes}_{\pi} Y}\right)$ and its norm is $\leq C\|B\|$. By Hahn-Banach theorem there exists $\tilde{B} \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=B(X \times Y)$ extending B and norm preserving.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Z} \leq C\|u\|_{X_{\widehat{\otimes}_{\pi} Y}}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
$(2) \Rightarrow(1)$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Z} \leq C\|u\|_{X_{\widehat{\otimes}_{\pi} Y}}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
(2) \Rightarrow (1). Set $u \in W \otimes Z$ and take $B \in B(W \times Z)$ with $\|B\|=1$ and $\|u\|_{W \widehat{\otimes}_{\pi} z}=B(u)$.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Z} \leq C\|u\|_{X_{\widehat{\otimes}_{\pi} Y}}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
(2) \Rightarrow (1). Set $u \in W \otimes Z$ and take $B \in B(W \times Z)$ with $\|B\|=1$ and $\|u\|_{W \widehat{\otimes}_{\pi} z}=B(u)$. By (2) there exists $\tilde{B} \in B(X \times Y)$ with $\|B\| \leq C$ extending B.

Isomorphic subspaces and tensor products

Theorem

Let $W \subseteq X, Z \subseteq Y$ subspaces and $C \geq 1$. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Z} \leq C\|u\|_{X_{\otimes_{\pi}} Y}$ for every $u \in W \otimes Z$.
(2) Every bounded bilinear form $B \in B(W \times Z)$ admits an extension $\tilde{B} \in B(X \times Y)$ such that $\|\tilde{B}\| \leq C\|B\|$.
(2) \Rightarrow (1). Set $u \in W \otimes Z$ and take $B \in B(W \times Z)$ with $\|B\|=1$ and $\|u\|_{W \widehat{\otimes}_{\tilde{\tilde{}}} z}=B(u)$. By (2) there exists $\tilde{B} \in B(X \times Y)$ with $\|B\| \leq C$ extending B. Since $\overline{\tilde{B}}$ extends B we have

$$
\|u\|_{W \widehat{\otimes}_{\pi} Z}=\tilde{B}(u) \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y} .
$$

Subspaces of projective tensor products and extension of operators

Subspaces of projective tensor products and extension of operators

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:

Subspaces of projective tensor products and extension of operators

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.

Subspaces of projective tensor products and extension of operators

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ s.t. $\|\tilde{T}\| \leq C\|T\|$.

Subspaces of projective tensor products and extension of operators

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ s.t. $\|\tilde{T}\| \leq C\|T\|$.

It seems difficult that the above property of extension of operators may always happen.

Subspaces of projective tensor products and extension of operators

Corollary

Let X, Y Banach spaces and $W \subseteq X$ subspace. TFAE:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ s.t. $\|\tilde{T}\| \leq C\|T\|$.

It seems difficult that the above property of extension of operators may always happen. Let us have a look to a closer look using (2).

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall Y$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension
$\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall Y$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(2) $\exists S: X \longrightarrow W^{* *}$ extending the canonical operator $J: W \longrightarrow W^{* *}$ with $\|S\| \leq C$.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall \underset{\sim}{\forall}$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(2) $\exists S: X \longrightarrow W^{* *}$ extending the canonical operator $J: W \longrightarrow W^{* *}$ with $\|S\| \leq C$.
(3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^{*} \longrightarrow X^{*}$ with $\|\varphi\| \leq C$ and such that $\varphi\left(w^{*}\right)(w)=w^{*}(w)$.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall \gamma$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(2) $\exists S: X \longrightarrow W^{* *}$ extending the canonical operator $J: W \longrightarrow W^{* *}$ with $\|S\| \leq C$.
(3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^{*} \longrightarrow X^{*}$ with $\|\varphi\| \leq C$ and such that $\varphi\left(w^{*}\right)(w)=w^{*}(w)$.
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall \gamma$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(2) $\exists S: X \longrightarrow W^{* *}$ extending the canonical operator $J: W \longrightarrow W^{* *}$ with $\|S\| \leq C$.
(3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^{*} \longrightarrow X^{*}$ with $\|\varphi\| \leq C$ and such that $\varphi\left(w^{*}\right)(w)=w^{*}(w)$.
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall \gamma$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(2) $\exists S: X \longrightarrow W^{* *}$ extending the canonical operator $J: W \longrightarrow W^{* *}$ with $\|S\| \leq C$.
(3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^{*} \longrightarrow X^{*}$ with $\|\varphi\| \leq C$ and such that $\varphi\left(w^{*}\right)(w)=w^{*}(w)$.
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.
$(1) \Rightarrow(2)$ is a particular case.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall \gamma$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(2) $\exists S: X \longrightarrow W^{* *}$ extending the canonical operator $J: W \longrightarrow W^{* *}$ with $\|S\| \leq C$.
(3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^{*} \longrightarrow X^{*}$ with $\|\varphi\| \leq C$ and such that $\varphi\left(w^{*}\right)(w)=w^{*}(w)$.
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.
$(1) \Rightarrow(2)$ is a particular case. $(2) \Rightarrow(3)$ just define $\varphi:=S_{\mid W^{*}}^{*}$.

Locally complemented subspaces

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) $\forall \gamma$, every bounded linear $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(2) $\exists S: X \longrightarrow W^{* *}$ extending the canonical operator $J: W \longrightarrow W^{* *}$ with $\|S\| \leq C$.
(3) There exists a linear Hahn-Banach extension operator, that is, $\varphi: W^{*} \longrightarrow X^{*}$ with $\|\varphi\| \leq C$ and such that $\varphi\left(w^{*}\right)(w)=w^{*}(w)$.
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.
$(1) \Rightarrow(2)$ is a particular case. $(2) \Rightarrow(3)$ just define $\varphi:=S_{W^{*}}^{*} .(3) \Rightarrow(4)$ follows taking $P=\varphi^{*}$.

Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space.

Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{* *}$ and $F \subseteq X^{*}, \varepsilon>0$ there exists $T: E \longrightarrow X$ such that:

Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{* *}$ and $F \subseteq X^{*}, \varepsilon>0$ there exists $T: E \longrightarrow X$ such that:
(1) $T(e)=e ~ e \in E \cap X$,

Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{* *}$ and $F \subseteq X^{*}, \varepsilon>0$ there exists $T: E \longrightarrow X$ such that:
(1) $T(e)=e \quad e \in E \cap X$,
(2) $(1-\varepsilon)\|e\| \leq\|T(e)\| \leq(1+\varepsilon)\|e\|, e \in E$,

Principle of local reflexivity

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(4) There exists a projection $P: X^{* *} \longrightarrow W^{* *}$ with $\|P\| \leq C$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Follows by the Principle of Local Reflexivity, by Lindenstrauss and Rosenthal.

Theorem (Principle of Local Reflexivity)

Let X be a Banach space. Then, for every finite-dimensional subspaces $E \subseteq X^{* *}$ and $F \subseteq X^{*}, \varepsilon>0$ there exists $T: E \longrightarrow X$ such that:
(1) $T(e)=e \quad e \in E \cap X$,
(2) $(1-\varepsilon)\|e\| \leq\|T(e)\| \leq(1+\varepsilon)\|e\|, e \in E$,
(3) $x^{*}\left(T\left(x^{* *}\right)\right)=x^{* *}\left(x^{*}\right), x^{*} \in F, x^{* *} \in E$.

A Lindenstrauss compactness argument

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) For every Banach space Y, every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

A Lindenstrauss compactness argument

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) For every Banach space Y, every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Let Y Banach space and $T: W \longrightarrow Y^{*}$ bounded.

A Lindenstrauss compactness argument

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) For every Banach space Y, every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Let Y Banach space and $T: W \longrightarrow Y^{*}$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon>0$ set $P_{(E, \varepsilon)}: E \longrightarrow W$ the operator described in (5).

A Lindenstrauss compactness argument

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) For every Banach space Y, every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Let Y Banach space and $T: W \longrightarrow Y^{*}$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon>0$ set $P_{(E, \varepsilon)}: E \longrightarrow W$ the operator described in (5). We would want, somehow, to glue the "local operators" $T \circ P_{(E, \varepsilon)}$.

A Lindenstrauss compactness argument

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) For every Banach space Y, every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Let Y Banach space and $T: W \longrightarrow Y^{*}$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon>0$ set $P_{(E, \varepsilon)}: E \longrightarrow W$ the operator described in (5). We would want, somehow, to glue the "local operators" $T \circ P_{(E, \varepsilon)}$. Define

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

A Lindenstrauss compactness argument

Theorem (Definition of (C) locally complemented subspace)

Let X be a Banach space and W subspace. TFAE:
(1) For every Banach space Y, every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.
(5) For every finite-dimensional $E \subseteq X$ and every $\varepsilon>0$ there exists a $T: E \longrightarrow W$ with $T(e)=e \quad \forall e \in E \cap W$ and $\|T\| \leq C+\varepsilon$.

Let Y Banach space and $T: W \longrightarrow Y^{*}$ bounded. Given $E \subseteq X$ finite-dim and $\varepsilon>0$ set $P_{(E, \varepsilon)}: E \longrightarrow W$ the operator described in (5). We would want, somehow, to glue the "local operators" $T \circ P_{(E, \varepsilon)}$. Define

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

It is not linear but, somehow, it is "more and more linear" when E grows.

A Lindenstrauss compactness argument

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E, \\
0 & \text { otherwise }
\end{array}\right.
$$

A Lindenstrauss compactness argument

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

Set $\Gamma:=\{(E, \varepsilon): E \subseteq X$ fin $\operatorname{dim}, 0<\varepsilon<1\}$. Directed with the order $(E, \varepsilon) \leq(F, \delta)$ iff $E \subset F$ and $\delta<\varepsilon$.

A Lindenstrauss compactness argument

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

Set $\Gamma:=\{(E, \varepsilon): E \subseteq X$ fin $\operatorname{dim}, 0<\varepsilon<1\}$. Directed with the order $(E, \varepsilon) \leq(F, \delta)$ iff $E \subset F$ and $\delta<\varepsilon$. Given $(E, \varepsilon) \in \Gamma$, if $x \notin E$ then $T_{(E, \varepsilon)}(x)=0$. Otherwise

$$
\left\|T_{(E, \varepsilon)}(x)\right\| \leq\|T\|\left\|P_{(E, \varepsilon)}\right\|\|x\| \leq(C+\varepsilon)\|T\|\|x\| .
$$

A Lindenstrauss compactness argument

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

Set $\Gamma:=\{(E, \varepsilon): E \subseteq X$ fin $\operatorname{dim}, 0<\varepsilon<1\}$. Directed with the order $(E, \varepsilon) \leq(F, \delta)$ iff $E \subset F$ and $\delta<\varepsilon$. Given $(E, \varepsilon) \in \Gamma$, if $x \notin E$ then $T_{(E, \varepsilon)}(X)=0$. Otherwise

$$
\left\|T_{(E, \varepsilon)}(x)\right\| \leq\|T\|\left\|P_{(E, \varepsilon)}\right\|\|x\| \leq(C+\varepsilon)\|T\|\|x\| .
$$

This means $T_{(E, \varepsilon)}(x) \in(C+\varepsilon)\|T\|\|x\| B_{Y^{*}}$.

A Lindenstrauss compactness argument

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

Set $\Gamma:=\{(E, \varepsilon): E \subseteq X$ fin $\operatorname{dim}, 0<\varepsilon<1\}$. Directed with the order $(E, \varepsilon) \leq(F, \delta)$ iff $E \subset F$ and $\delta<\varepsilon$. Given $(E, \varepsilon) \in \Gamma$, if $x \notin E$ then $T_{(E, \varepsilon)}(x)=0$. Otherwise

$$
\left\|T_{(E, \varepsilon)}(x)\right\| \leq\|T\|\left\|P_{(E, \varepsilon)}\right\|\|x\| \leq(C+\varepsilon)\|T\|\|x\| .
$$

This means $T_{(E, \varepsilon)}(x) \in(C+\varepsilon)\|T\|\|x\| B_{Y^{*}}$. So

$$
T_{(E, \varepsilon)} \in \prod_{x \in X}\left((C+1)\|T\|\|x\| B_{Y^{*}}, w^{*}\right)
$$

which is a compact topological space by Tychonoff theorem.

A Lindenstrauss compactness argument

$$
T_{(E, \varepsilon)}(x):=\left\{\begin{array}{cc}
T\left(P_{(E, \varepsilon)}\right)(x) & \text { if } x \in E \\
0 & \text { otherwise }
\end{array}\right.
$$

Set $\Gamma:=\{(E, \varepsilon): E \subseteq X$ fin $\operatorname{dim}, 0<\varepsilon<1\}$. Directed with the order $(E, \varepsilon) \leq(F, \delta)$ iff $E \subset F$ and $\delta<\varepsilon$. Given $(E, \varepsilon) \in \Gamma$, if $x \notin E$ then $T_{(E, \varepsilon)}(X)=0$. Otherwise

$$
\left\|T_{(E, \varepsilon)}(x)\right\| \leq\|T\|\left\|P_{(E, \varepsilon)}\right\|\|x\| \leq(C+\varepsilon)\|T\|\|x\| .
$$

This means $T_{(E, \varepsilon)}(x) \in(C+\varepsilon)\|T\|\|x\| B_{Y^{*}}$. So

$$
T_{(E, \varepsilon)} \in \prod_{x \in X}\left((C+1)\|T\|\|x\| B_{Y^{*}}, w^{*}\right)
$$

which is a compact topological space by Tychonoff theorem. Take \tilde{T} a cluster point of the net $\left(T_{(E, \varepsilon)}\right)_{(E, \varepsilon) \in \mathrm{\Gamma}}$, and it satisfies the desired requirements.

Examples where projective tensor does not respect subspaces. Isomorphic case.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X_{\otimes_{\pi}} Y}$ for every $u \in W \otimes Y$.
(2) Every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.

Examples where projective tensor does not respect subspaces. Isomorphic case.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$.

Examples where projective tensor does not respect subspaces. Isomorphic case.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space X not isomorphic to a Hilbert space.

Examples where projective tensor does not respect subspaces. Isomorphic case.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space X not isomorphic to a Hilbert space. There exists a subspace $Y \subseteq X$ for which there is no projection $P: X \longrightarrow Y$.

Examples where projective tensor does not respect subspaces. Isomorphic case.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space X not isomorphic to a Hilbert space. There exists a subspace $Y \subseteq X$ for which there is no projection $P: X \longrightarrow Y$. This means that the operator $i: Y \longrightarrow Y$ does not admit any continuous extension to $P: X \longrightarrow Y$.

Examples where projective tensor does not respect subspaces. Isomorphic case.

Corollary

Let X and Y be two Banach spaces and let $W \subseteq X$ be a subspace. The following assertions are equivalent:
(1) $\|u\|_{W \widehat{\otimes}_{\pi} Y} \leq C\|u\|_{X \widehat{\otimes}_{\pi} Y}$ for every $u \in W \otimes Y$.
(2) Every bounded linear operator $T \in L\left(W, Y^{*}\right)$ admits an extension $\tilde{T} \in L\left(X, Y^{*}\right)$ such that $\|\tilde{T}\| \leq C\|T\|$.

We are able to find X, Y, W such that $W \widehat{\otimes}_{\pi} Y$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y$. Take a reflexive Banach space X not isomorphic to a Hilbert space. There exists a subspace $Y \subseteq X$ for which there is no projection $P: X \longrightarrow Y$. This means that the operator $i: Y \longrightarrow Y$ does not admit any continuous extension to $P: X \longrightarrow Y$. Hence $Y \widehat{\otimes}_{\pi} Y^{*}$ is not isomorphically a subspace of $X \widehat{\otimes}_{\pi} Y^{*}$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case.

Examples where projective tensor does not respect subspaces. Finite-dimensional case.

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \geq 1$ so that for every finite-dimensional subspace E of X there exists a projection $P: X \longrightarrow E$ with $\|P\| \leq \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4 \lambda^{2}$

Examples where projective tensor does not respect subspaces. Finite-dimensional case.

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \geq 1$ so that for every finite-dimensional subspace E of X there exists a projection $P: X \longrightarrow E$ with $\|P\| \leq \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4 \lambda^{2}$

Take an infinite-dimensional Banach space X which is not isomorphic to a Hilbert space and let $\lambda>1$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case.

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \geq 1$ so that for every finite-dimensional subspace E of X there exists a projection $P: X \longrightarrow E$ with $\|P\| \leq \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4 \lambda^{2}$

Take an infinite-dimensional Banach space X which is not isomorphic to a Hilbert space and let $\lambda>1$. Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $\|P\|>\lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case.

Theorem

Let X be an infinite-dimensional Banach space with the property that there exists $\lambda \geq 1$ so that for every finite-dimensional subspace E of X there exists a projection $P: X \longrightarrow E$ with $\|P\| \leq \lambda$. Then X is isomorphic to a Hilbert space and, indeed, it is $4 \lambda^{2}$

Take an infinite-dimensional Banach space X which is not isomorphic to a Hilbert space and let $\lambda>1$. Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $\|P\|>\lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $\|P\|>\lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $\|P\|>\lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $\|P\|>\lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $\|P\|>\lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $\|P\|>\lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $\|P\|>\lambda$.
If not, then for every $E \subseteq F \subseteq X$ there would exists a bounded projection $P_{F}: F \longrightarrow E$ with $\left\|P_{F}\right\| \leq \lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $\|P\|>\lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $\|P\|>\lambda$.
If not, then for every $E \subseteq F \subseteq X$ there would exists a bounded projection $P_{F}: F \longrightarrow E$ with $\left\|P_{F}\right\| \leq \lambda$. Set $\Gamma:=\{F \subseteq X: E \subseteq F, \operatorname{dim}(F)<\infty\}$ ordered with the order inclusion. Define

$$
T_{F}(x):=\left\{\begin{array}{cc}
P_{F}(x) & \text { if } x \in F, \\
0 & \text { otherwise }
\end{array}\right.
$$

Observe $T_{F} \in \prod_{x \in X}\left(\lambda B_{E},\|\cdot\|\right)$, which is compact.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Then there exists a subspace $E \subseteq X$ such that, for every bounded projection $P: X \longrightarrow E$ it follows $\|P\|>\lambda$. Then there exists a finite-dimensional subspace $E \subseteq F \subseteq X$ such that, for every bounded projection $P: F \longrightarrow E$, then $\|P\|>\lambda$.
If not, then for every $E \subseteq F \subseteq X$ there would exists a bounded projection $P_{F}: F \longrightarrow E$ with $\left\|P_{F}\right\| \leq \lambda$. Set $\Gamma:=\{F \subseteq X: E \subseteq F, \operatorname{dim}(F)<\infty\}$ ordered with the order inclusion. Define

$$
T_{F}(x):=\left\{\begin{array}{cc}
P_{F}(x) & \text { if } x \in F, \\
0 & \text { otherwise }
\end{array}\right.
$$

Observe $T_{F} \in \prod_{x \in X}\left(\lambda B_{E},\|\cdot\|\right)$, which is compact. Take a cluster point in the above compact space, say P. It can be proved that $P: X \longrightarrow E$ is a linear projection and $\|P\| \leq \lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Consequently, given the identity operator $i: E \longrightarrow E$, for any extension $P: F \longrightarrow E$ we get $\|P\| \geq \lambda$.

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Consequently, given the identity operator $i: E \longrightarrow E$, for any extension $P: F \longrightarrow E$ we get $\|P\| \geq \lambda$. This implies that

$$
\|u\|_{E \widehat{\otimes}_{\pi} E^{*}} \leq C\|u\|_{F \widehat{\otimes}_{\pi} E^{*}} \forall u \in E \widehat{\otimes}_{\pi} E^{*} \Rightarrow C>\lambda
$$

Examples where projective tensor does not respect subspaces. Finite-dimensional case

Consequently, given the identity operator $i: E \longrightarrow E$, for any extension $P: F \longrightarrow E$ we get $\|P\| \geq \lambda$. This implies that

$$
\|u\|_{E \widehat{\otimes}_{\pi} E^{*}} \leq C\|u\|_{F \widehat{\otimes}_{\pi} E^{*}} \forall u \in E \widehat{\otimes}_{\pi} E^{*} \Rightarrow C>\lambda
$$

We have proved the following result.

Theorem

Let X be an infinite-dimensional Banach space which is not isomorphic to a Hilbert space. Then, for every $\lambda>0$ there are $E \subseteq F \subseteq X$ finite dimensional such that

$$
\|u\|_{E \widehat{\otimes}_{\pi} E^{*}} \leq C\|u\|_{F \widehat{\otimes}_{\pi} E^{*}} \forall u \in E \widehat{\otimes}_{\pi} E^{*} \Rightarrow C>\lambda
$$

A positive known result

A positive known result

Corollary
 If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{* *} \widehat{\otimes}_{\pi} Y$.

A positive known result

Corollary
 If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{* *} \widehat{\otimes}_{\pi} Y$.

The principle of local reflexivity establishes X is 1-locally complemented in $X^{* *}$.

A positive known result

Corollary

If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{* *} \widehat{\otimes}_{\pi} Y$.

The principle of local reflexivity establishes X is 1-locally complemented in $X^{* *}$. This implies that for any Banach space Y and every bounded operator $T: X \longrightarrow Y^{*}$ there exists a norm-extending extension $\hat{T}: X^{* *} \longrightarrow Y^{*}$.

A positive known result

Corollary

If X and Y are Banach space then $X \widehat{\otimes}_{\pi} Y$ is isometrically a subspace of $X^{* *} \widehat{\otimes}_{\pi} Y$.

The principle of local reflexivity establishes X is 1-locally complemented in $X^{* *}$. This implies that for any Banach space Y and every bounded operator $T: X \longrightarrow Y^{*}$ there exists a norm-extending extension $\hat{T}: X^{* *} \longrightarrow Y^{*}$. This finishes the proof.

Tensor product of operators

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$

Tensor product of operators

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$, observe that the mapping $\varphi: X \times Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ defined by

$$
\varphi(x, y):=T(x) \otimes S(y)
$$

is linear and bounded.

Tensor product of operators

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$, observe that the mapping $\varphi: X \times Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ defined by

$$
\varphi(x, y):=T(x) \otimes S(y)
$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\|=\|T\|\|S\|$.

Tensor product of operators

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$, observe that the mapping $\varphi: X \times Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ defined by

$$
\varphi(x, y):=T(x) \otimes S(y)
$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\|=\|T\|\|S\|$. By the universal property there exists a bounded linear operator $T \otimes S: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$
(T \otimes S)(x \otimes y)=\varphi(x, y)=T(x) \otimes S(y)
$$

Tensor product of operators

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$, observe that the mapping $\varphi: X \times Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ defined by

$$
\varphi(x, y):=T(x) \otimes S(y)
$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\|=\|T\|\|S\|$. By the universal property there exists a bounded linear operator $T \otimes S: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$
(T \otimes S)(x \otimes y)=\varphi(x, y)=T(x) \otimes S(y)
$$

In general, if T and S are onto linear isomorphisms, then so is $T \otimes S$.

Tensor product of operators

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$, observe that the mapping $\varphi: X \times Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ defined by

$$
\varphi(x, y):=T(x) \otimes S(y)
$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\|=\|T\|\|S\|$. By the universal property there exists a bounded linear operator $T \otimes S: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$
(T \otimes S)(x \otimes y)=\varphi(x, y)=T(x) \otimes S(y)
$$

In general, if T and S are onto linear isomorphisms, then so is $T \otimes S$. For into isomorphisms the above result does not follow.

Tensor product of operators

Given two bounded linear operators between Banach spaces $T: X \longrightarrow Z$ and $S: Y \longrightarrow W$, observe that the mapping $\varphi: X \times Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ defined by

$$
\varphi(x, y):=T(x) \otimes S(y)
$$

is linear and bounded. Indeed, it is not difficult to prove that $\|\varphi\|=\|T\|\|S\|$. By the universal property there exists a bounded linear operator $T \otimes S: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ satisfying that

$$
(T \otimes S)(x \otimes y)=\varphi(x, y)=T(x) \otimes S(y) .
$$

In general, if T and S are onto linear isomorphisms, then so is $T \otimes S$. For into isomorphisms the above result does not follow. However, the above operators will reveal a different better behaviour which justifies the name "projective" for the π-norm.

Tensor products of projections

Proposition

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then
$P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection.

Tensor products of projections

Proposition

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then $P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

Tensor products of projections

Proposition

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then
$P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^{2}=P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$.

Tensor products of projections

Proposition

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then
$P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^{2}=P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$.

Tensor products of projections

Proposition

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then
$P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^{2}=P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$. Then

$$
\|u\|_{X \widehat{\otimes}_{\pi} Y} \leq\|u\|_{Z \widehat{\otimes}_{\pi} W}
$$

Tensor products of projections

Proposition

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then
$P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^{2}=P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$. Then

$$
\|u\|_{X \widehat{\otimes}_{\pi} Y} \leq\|u\|_{Z \widehat{\otimes}_{\pi} W}=\|(P \otimes Q)(u)\|_{Z \widehat{\otimes}_{\pi} w}
$$

Tensor products of projections

Proposition

If $P: X \longrightarrow Z$ and $Q: Y \longrightarrow W$ is a projection, then
$P \otimes Q: X \widehat{\otimes}_{\pi} Y \longrightarrow Z \widehat{\otimes}_{\pi} W$ is a projection. In particular, if $Z \subseteq X$ and $W \subseteq Y$ are complemented subspaces, then so is $Z \widehat{\otimes}_{\pi} W \subseteq X \widehat{\otimes}_{\pi} Y$.

It is immediate that $(P \otimes Q)^{2}=P \otimes Q$, and that the image is $Z \widehat{\otimes}_{\pi} W$. In order to see that $Z \widehat{\otimes}_{\pi} W$ is a subspace of $X \widehat{\otimes}_{\pi} Y$, select $u \in Z \widehat{\otimes}_{\pi} W$. Then

$$
\|u\|_{X \widehat{\otimes}_{\pi} Y} \leq\|u\|_{Z \widehat{\otimes}_{\pi} W}=\|(P \otimes Q)(u)\|_{Z \widehat{\otimes}_{\pi} W} \leq\|P\|\|Q\|\|u\|_{X \widehat{\otimes}_{\pi} Y} .
$$

References

F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Springer Inc. (2006).
M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach space theory, Springer Science+Business Media, LLC 2011.
N. J. Kalton, Locally complemented subspaces of \mathcal{L}_{p}-spaces for $0<p \leq 1$, Math. Nach. 115 (1984), 71-97.
囲 J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_{p} spaces, Isr. J. Math. 7, 4 (1969), 325-349.

囯 T. S. S. R. K. Rao, On ideals in Banach spaces, Rocky J. Math. 31, 2 (2001), 595-609.
R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 2002.

