Geometry of tensor products and bilinear mappings in Banach spaces I

Abraham Rueda Zoca XXII Lluís Santaló School 2023 Linear and non-linear analysis in Banach spaces

Universidad de Granada
Departamento de Análisis Matemático

Support

My research is supported by MCIN/AEI/10.13039/501100011033: Grant PID2021-122126NB-C31; by Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22, and by Junta de Andalucía: Grants FQM-0185.
f SéNeCa ${ }^{(+)}$

References

R R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 2002.

The desire that every function is linear

Given X a set with any structure, Z a Banach space and a mapping $f: X \longrightarrow Z$ which is compatible with the structure of X and the Banach space structure of Z.

The desire that every function is linear

Given X a set with any structure, Z a Banach space and a mapping $f: X \longrightarrow Z$ which is compatible with the structure of X and the Banach space structure of Z. You wonder when you can find a Banach space Y, a good embedding $\delta: X \hookrightarrow Y$ and a linear operator $T_{f}: Y \longrightarrow Z$ such that the following diagram conmutes:

The desire that every function is linear

Given X a set with any structure, Z a Banach space and a mapping $f: X \longrightarrow Z$ which is compatible with the structure of X and the Banach space structure of Z. You wonder when you can find a Banach space Y, a good embedding $\delta: X \hookrightarrow Y$ and a linear operator $T_{f}: Y \longrightarrow Z$ such that the following diagram conmutes:

Example

The desire that every function is linear

Given X a set with any structure, Z a Banach space and a mapping $f: X \longrightarrow Z$ which is compatible with the structure of X and the Banach space structure of Z. You wonder when you can find a Banach space Y, a good embedding $\delta: X \hookrightarrow Y$ and a linear operator $T_{f}: Y \longrightarrow Z$ such that the following diagram conmutes:

Example

(1) X metric, f Lipschitz. $Y=\mathcal{F}(M)$ the Lipschitz-free space.

The desire that every function is linear

Given X a set with any structure, Z a Banach space and a mapping $f: X \longrightarrow Z$ which is compatible with the structure of X and the Banach space structure of Z. You wonder when you can find a Banach space Y, a good embedding $\delta: X \hookrightarrow Y$ and a linear operator $T_{f}: Y \longrightarrow Z$ such that the following diagram conmutes:

Example

(1) X metric, f Lipschitz. $Y=\mathcal{F}(M)$ the Lipschitz-free space.
(2) X Banach, f (continuous) polynomial. $Y=\widehat{\otimes}_{\pi, s, N} X$ symmetric tensor product.

The desire that every function is linear

The desire that every function is linear

In the desire to "improve f ", the price to pay is that the structure of Y is "quite more involved".

The desire that every function is linear

In the desire to "improve f ", the price to pay is that the structure of Y is "quite more involved".
Our target is: What about $X=U \times V, U, V$ Banach spaces and f is bilinear and continuous?

The desire that every function is linear

In the desire to "improve f ", the price to pay is that the structure of Y is "quite more involved".
Our target is: What about $X=U \times V, U, V$ Banach spaces and f is bilinear and continuous?
Let us start with a vector spaces framework, and let us talk later about norms and continuity.

Bilinear mappings

Bilinear mappings

Given X, Y, Z vector spaces

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(0) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(1) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.
(2) $B\left(x, \alpha y+\beta y^{\prime}\right)=\alpha B(x, y)+\beta B\left(x, y^{\prime}\right)$.

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(0) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.
(2) $B\left(x, \alpha y+\beta y^{\prime}\right)=\alpha B(x, y)+\beta B\left(x, y^{\prime}\right)$.

Call $\operatorname{Bil}(X \times Y, Z):=\{B: X \times Y \longrightarrow Z: B$ is bilinear $\}$.

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(0) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.
(2) $B\left(x, \alpha y+\beta y^{\prime}\right)=\alpha B(x, y)+\beta B\left(x, y^{\prime}\right)$.

Call $\operatorname{Bil}(X \times Y, Z):=\{B: X \times Y \longrightarrow Z: B$ is bilinear $\}$. So, in our context, given a bilinear mapping $B: X \times Y \longrightarrow Z$

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(1) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.
(2) $B\left(x, \alpha y+\beta y^{\prime}\right)=\alpha B(x, y)+\beta B\left(x, y^{\prime}\right)$.

Call $\operatorname{Bil}(X \times Y, Z):=\{B: X \times Y \longrightarrow Z: B$ is bilinear $\}$. So, in our context, given a bilinear mapping $B: X \times Y \longrightarrow Z$ we look a vector space W,

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(1) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.
(2) $B\left(x, \alpha y+\beta y^{\prime}\right)=\alpha B(x, y)+\beta B\left(x, y^{\prime}\right)$.

Call $\operatorname{Bil}(X \times Y, Z):=\{B: X \times Y \longrightarrow Z: B$ is bilinear $\}$. So, in our context, given a bilinear mapping $B: X \times Y \longrightarrow Z$ we look a vector space W, an embedding $\delta: X \times Y \longrightarrow W$

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(0) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.
(2) $B\left(x, \alpha y+\beta y^{\prime}\right)=\alpha B(x, y)+\beta B\left(x, y^{\prime}\right)$.

Call $\operatorname{Bil}(X \times Y, Z):=\{B: X \times Y \longrightarrow Z: B$ is bilinear $\}$.
So, in our context, given a bilinear mapping $B: X \times Y \longrightarrow Z$ we look a vector space W, an embedding $\delta: X \times Y \longrightarrow W$ and a mapping $T_{B}: W \longrightarrow Z$ such that the following diagram conmutes

Bilinear mappings

Given X, Y, Z vector spaces, a bilinear mapping is a function $B: X \times Y \longrightarrow Z$ such that
(1) $B\left(\alpha x+\beta x^{\prime}, y\right)=\alpha B(x, y)+\beta B\left(x^{\prime}, y\right)$.
(2) $B\left(x, \alpha y+\beta y^{\prime}\right)=\alpha B(x, y)+\beta B\left(x, y^{\prime}\right)$.

Call $\operatorname{Bil}(X \times Y, Z):=\{B: X \times Y \longrightarrow Z: B$ is bilinear $\}$.
So, in our context, given a bilinear mapping $B: X \times Y \longrightarrow Z$ we look a vector space W, an embedding $\delta: X \times Y \longrightarrow W$ and a mapping $T_{B}: W \longrightarrow Z$ such that the following diagram conmutes

Where can we find W ?

Linearising bilinear mappings

If we fix $Z=\mathbb{K}$ the scalar field, we have the following scheme:

Linearising bilinear mappings

If we fix $Z=\mathbb{K}$ the scalar field, we have the following scheme:

Linearising bilinear mappings

If we fix $Z=\mathbb{K}$ the scalar field, we have the following scheme:

A desireable property would be that $T_{\alpha B+\beta B^{\prime}}=\alpha T_{B}+\beta T_{B^{\prime}}$.

Linearising bilinear mappings

If we fix $Z=\mathbb{K}$ the scalar field, we have the following scheme:

A desireable property would be that $T_{\alpha B+\beta B^{\prime}}=\alpha T_{B}+\beta T_{B^{\prime}}$. This suggest that the elements of W act linearly on bilinear mappings on $X \times Y$.

Linearising bilinear mappings

If we fix $Z=\mathbb{K}$ the scalar field, we have the following scheme:

A desireable property would be that $T_{\alpha B+\beta B^{\prime}}=\alpha T_{B}+\beta T_{B^{\prime}}$. This suggest that the elements of W act linearly on bilinear mappings on $X \times Y$. This makes sensible to look for W inside $\operatorname{Bil}(X \times Y)^{\sharp}$, the algebraic dual of the vector space $\operatorname{Bil}(X \times Y)$.

The (algebraic) tensor product space

The (algebraic) tensor product space

Given $x \in X$ and $y \in Y$, we get

$$
T_{B}(\delta(x, y))=B(x, y) .
$$

The (algebraic) tensor product space

Given $x \in X$ and $y \in Y$, we get

$$
T_{B}(\delta(x, y))=B(x, y)
$$

Call $x \otimes y: \operatorname{Bil}(X \times Y) \longrightarrow \mathbb{K}$ by $(x \otimes y)(B):=B(x, y)$.

The (algebraic) tensor product space

Given $x \in X$ and $y \in Y$, we get

$$
T_{B}(\delta(x, y))=B(x, y) .
$$

Call $x \otimes y: \operatorname{Bil}(X \times Y) \longrightarrow \mathbb{K}$ by $(x \otimes y)(B):=B(x, y)$. The element $x \otimes y$ should be in W.

The (algebraic) tensor product space

Given $x \in X$ and $y \in Y$, we get

$$
T_{B}(\delta(x, y))=B(x, y)
$$

Call $x \otimes y: \operatorname{Bil}(X \times Y) \longrightarrow \mathbb{K}$ by $(x \otimes y)(B):=B(x, y)$. The element $x \otimes y$ should be in W. Since W is a vector space $\operatorname{span}\{x \otimes y: x \in X, y \in Y\} \subseteq W$.

The (algebraic) tensor product space

Given $x \in X$ and $y \in Y$, we get

$$
T_{B}(\delta(x, y))=B(x, y)
$$

Call $x \otimes y: \operatorname{Bil}(X \times Y) \longrightarrow \mathbb{K}$ by $(x \otimes y)(B):=B(x, y)$. The element $x \otimes y$ should be in W. Since W is a vector space $\operatorname{span}\{x \otimes y: x \in X, y \in Y\} \subseteq W$.

Tensor product of vector spaces

The tensor product of two vector spaces X and Y is defined by

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\} .
$$

Tensor products. Warnings!

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\} .
$$

Tensor products. Warnings!

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\}
$$

(1) Every $u \in X \otimes Y$ can be written as $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ for $n \in \mathbb{N}, x_{i} \in X, y_{i} \in Y$.

Tensor products. Warnings!

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\}
$$

(1) Every $u \in X \otimes Y$ can be written as $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ for $n \in \mathbb{N}, x_{i} \in X, y_{i} \in Y$. But this expression is NOT UNIQUE!.

Tensor products. Warnings!

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\}
$$

(1) Every $u \in X \otimes Y$ can be written as $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ for $n \in \mathbb{N}, x_{i} \in X, y_{i} \in Y$. But this expression is NOT UNIQUE!.
(2) $X \otimes Y$ is NOT the free vector space defined by $\{x \otimes y: x \in X, y \in Y\}$.

Tensor products. Warnings!

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\} .
$$

(1) Every $u \in X \otimes Y$ can be written as $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ for $n \in \mathbb{N}, x_{i} \in X, y_{i} \in Y$. But this expression is NOT UNIQUE!.
(2) $X \otimes Y$ is NOT the free vector space defined by $\{x \otimes y: x \in X, y \in Y\}$. The fact that $X \otimes Y \subseteq \operatorname{Bil}(X \times Y)^{\sharp}$ impose several equalities:

Tensor products. Warnings!

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\} .
$$

(1) Every $u \in X \otimes Y$ can be written as $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ for $n \in \mathbb{N}, x_{i} \in X, y_{i} \in Y$. But this expression is NOT UNIQUE!.
(2) $X \otimes Y$ is NOT the free vector space defined by $\{x \otimes y: x \in X, y \in Y\}$. The fact that $X \otimes Y \subseteq \operatorname{Bil}(X \times Y)^{\sharp}$ impose several equalities:
(0) $\left(\alpha x+\beta x^{\prime}\right) \otimes y=\alpha x \otimes y+\beta x^{\prime} \otimes y$.

Tensor products. Warnings!

$$
X \otimes Y:=\operatorname{span}\{x \otimes y: x \in X, y \in Y\} .
$$

(1) Every $u \in X \otimes Y$ can be written as $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ for $n \in \mathbb{N}, x_{i} \in X, y_{i} \in Y$. But this expression is NOT UNIQUE!.
(2) $X \otimes Y$ is NOT the free vector space defined by $\{x \otimes y: x \in X, y \in Y\}$. The fact that $X \otimes Y \subseteq \operatorname{Bil}(X \times Y)^{\sharp}$ impose several equalities:
(0) $\left(\alpha x+\beta x^{\prime}\right) \otimes y=\alpha x \otimes y+\beta x^{\prime} \otimes y$.
(2) $x \otimes\left(\alpha y+\beta y^{\prime}\right)=\alpha x \otimes y+\beta x \otimes y^{\prime}$.

The linearisation property of tensor products

where $\otimes(x, y)=x \otimes y$.

The linearisation property of tensor products

where $\otimes(x, y)=x \otimes y$. Given $B \in \operatorname{Bil}(X \times Y)$ define T_{B} by $T_{B}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right):=\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right)$.

The linearisation property of tensor products

where $\otimes(x, y)=x \otimes y$. Given $B \in \operatorname{Bil}(X \times Y)$ define T_{B} by $T_{B}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right):=\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right) . T_{B}$ is linear.

The linearisation property of tensor products

where $\otimes(x, y)=x \otimes y$. Given $B \in \operatorname{Bil}(X \times Y)$ define T_{B} by
$T_{B}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right):=\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right) . T_{B}$ is linear. Conversely, if $T: X \otimes Y \longrightarrow Z$ is linear, define $B: X \times Y \longrightarrow Z$ by the equation

$$
B(x, y):=T(x \otimes y),
$$

The linearisation property of tensor products

where $\otimes(x, y)=x \otimes y$. Given $B \in \operatorname{Bil}(X \times Y)$ define T_{B} by
$T_{B}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right):=\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right) . T_{B}$ is linear. Conversely, if $T: X \otimes Y \longrightarrow Z$ is linear, define $B: X \times Y \longrightarrow Z$ by the equation

$$
B(x, y):=T(x \otimes y),
$$

in other words, $B=T \circ \otimes$.

The linearisation property of tensor products

where $\otimes(x, y)=x \otimes y$. Given $B \in \operatorname{Bil}(X \times Y)$ define T_{B} by
$T_{B}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right):=\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right) . T_{B}$ is linear. Conversely, if $T: X \otimes Y \longrightarrow Z$ is linear, define $B: X \times Y \longrightarrow Z$ by the equation

$$
B(x, y):=T(x \otimes y),
$$

in other words, $B=T \circ \otimes$. It is immediate $T_{B}=T$.

Defining norms on projective tensor products

Defining norms on projective tensor products

Let X and Y be two Banach spaces.

Defining norms on projective tensor products

Let X and Y be two Banach spaces. We would want to define a norm on $X \otimes Y$.
Given $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes Y$, we would want to find an expression for $\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|$.

Defining norms on projective tensor products

Let X and Y be two Banach spaces. We would want to define a norm on $X \otimes Y$.
Given $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes Y$, we would want to find an expression for $\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|$.
WARNING!: the expression of u as combination of basic tensors is not unique!

Defining norms on projective tensor products

Let X and Y be two Banach spaces. We would want to define a norm on $X \otimes Y$.
Given $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes Y$, we would want to find an expression for $\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|$.
WARNING!: the expression of u as combination of basic tensors is not unique!
So let us start thinking on $\|x \otimes y\|$.

Defining norms on projective tensor products

Let X and Y be two Banach spaces. We would want to define a norm on $X \otimes Y$.
Given $u=\sum_{i=1}^{n} x_{i} \otimes y_{i} \in X \otimes Y$, we would want to find an expression for $\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|$.
WARNING!: the expression of u as combination of basic tensors is not unique!
So let us start thinking on $\|x \otimes y\|$.
It is reasonable to require $\|x \otimes y\| \leq\|x\|\|y\|$.

Bilinear continuous mappings and "reasonable" norms

Continuous bilinear mappings

Let X, Y, Z be Banach spaces.

Bilinear continuous mappings and "reasonable" norms

Continuous bilinear mappings

Let X, Y, Z be Banach spaces. We say that $B \in \operatorname{Bil}(X \times Y, Z)$ is bounded if there exists $C>0$ such that

Bilinear continuous mappings and "reasonable" norms

Continuous bilinear mappings

Let X, Y, Z be Banach spaces. We say that $B \in \operatorname{Bil}(X \times Y, Z)$ is bounded if there exists $C>0$ such that

$$
\|B(x, y)\| \leq C\|x\|\|y\| \forall x \in X, y \in Y
$$

Bilinear continuous mappings and "reasonable" norms

Continuous bilinear mappings

Let X, Y, Z be Banach spaces. We say that $B \in \operatorname{Bil}(X \times Y, Z)$ is bounded if there exists $C>0$ such that

$$
\|B(x, y)\| \leq C\|x\|\|y\| \forall x \in X, y \in Y
$$

We denote by $\mathcal{B}(X \times Y, Z)$ the Banach space of all bilinear continuous mapping under the norm $\|B\|:=\sup _{x \in B_{X}, y \in B_{Y}}\|B(x, y)\|$.

Bilinear continuous mappings and "reasonable" norms

Continuous bilinear mappings

Let X, Y, Z be Banach spaces. We say that $B \in \operatorname{Bil}(X \times Y, Z)$ is bounded if there exists $C>0$ such that

$$
\|B(x, y)\| \leq C\|x\|\|y\| \forall x \in X, y \in Y
$$

We denote by $\mathcal{B}(X \times Y, Z)$ the Banach space of all bilinear continuous mapping under the norm $\|B\|:=\sup _{x \in B_{X}, y \in B_{Y}}\|B(x, y)\|$.

In view of the above reasonability is nothing but forcing the bilinear mapping $\otimes: X \times Y \longrightarrow X \otimes Y$ to be continuous.

The projective norm

$$
\|x \otimes y\| \leq\|x\|\|y\| .
$$

Now if $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, then

$$
\|u\| \leq \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\| .
$$

The projective norm

$$
\|x \otimes y\| \leq\|x\|\|y\| .
$$

Now if $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, then

$$
\|u\| \leq \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|
$$

The representation of u is not unique.

The projective norm

$$
\|x \otimes y\| \leq\|x\|\|y\| .
$$

Now if $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, then

$$
\|u\| \leq \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\| .
$$

The representation of u is not unique. But

$$
\|u\| \leq \inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

The projective norm

$$
\|x \otimes y\| \leq\|x\|\|y\| .
$$

Now if $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$, then

$$
\|u\| \leq \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|
$$

The representation of u is not unique. But

$$
\|u\| \leq \inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

Projective norm

Given $u \in X \otimes Y$ we define

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate.

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate. Conversely, $x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}$ s.t $x^{*}(x)=\|x\|, y^{*}(y)=\|y\|$.

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate. Conversely, $x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}$ s.t $x^{*}(x)=\|x\|, y^{*}(y)=\|y\|$.
Define $B: X \times Y \longrightarrow \mathbb{K}$ by $B(u, v):=x^{*}(u) y^{*}(v)$.

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate. Conversely, $x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}$ s.t $x^{*}(x)=\|x\|, y^{*}(y)=\|y\|$.
Define $B: X \times Y \longrightarrow \mathbb{K}$ by $B(u, v):=x^{*}(u) y^{*}(v)$. B is continuous bilinear mapping.

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate. Conversely, $x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}$ s.t $x^{*}(x)=\|x\|, y^{*}(y)=\|y\|$.
Define $B: X \times Y \longrightarrow \mathbb{K}$ by $B(u, v):=x^{*}(u) y^{*}(v)$. B is continuous bilinear mapping. Also, given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate. Conversely, $x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}$ s.t $x^{*}(x)=\|x\|, y^{*}(y)=\|y\|$.
Define $B: X \times Y \longrightarrow \mathbb{K}$ by $B(u, v):=x^{*}(u) y^{*}(v)$. B is continuous bilinear mapping. Also, given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

$$
\left|T_{B}(u)\right| \leq \sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\left\|y^{*}\left(y_{i}\right) \mid \leq \sum_{i=1}^{n}\right\| x_{i}\| \| y_{i} \|\right.
$$

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate. Conversely, $x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}$ s.t $x^{*}(x)=\|x\|, y^{*}(y)=\|y\|$.
Define $B: X \times Y \longrightarrow \mathbb{K}$ by $B(u, v):=x^{*}(u) y^{*}(v)$. B is continuous bilinear mapping. Also, given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

$$
\left|T_{B}(u)\right| \leq \sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\left\|y^{*}\left(y_{i}\right) \mid \leq \sum_{i=1}^{n}\right\| x_{i}\| \| y_{i} \|\right.
$$

Thus $\left|T_{B}(u)\right| \leq\|u\|_{\pi}$ and, hence, T_{B} acts as a linear continuous functional on $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$ and $\left\|T_{B}\right\| \leq 1$.

The projective norm, first properties

$$
\|u\|=\|u\|_{\pi}=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|: u=\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\}
$$

$\|\cdot\|_{\pi}$ is a norm on $X \otimes Y$. Moreover, $\|x \otimes y\|=\|x\|\|y\|$.
$\|x \otimes y\| \leq\|x\|\|y\|$ is immediate. Conversely, $x^{*} \in S_{X^{*}}, y^{*} \in S_{Y^{*}}$ s.t $x^{*}(x)=\|x\|, y^{*}(y)=\|y\|$.
Define $B: X \times Y \longrightarrow \mathbb{K}$ by $B(u, v):=x^{*}(u) y^{*}(v)$. B is continuous bilinear mapping. Also, given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

$$
\left|T_{B}(u)\right| \leq \sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\left\|y^{*}\left(y_{i}\right) \mid \leq \sum_{i=1}^{n}\right\| x_{i}\| \| y_{i} \|\right.
$$

Thus $\left|T_{B}(u)\right| \leq\|u\|_{\pi}$ and, hence, T_{B} acts as a linear continuous functional on $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$ and $\left\|T_{B}\right\| \leq 1$. Then

$$
\|x \otimes y\|_{\pi} \geq\left|T_{B}(x \otimes y)\right|=\|x\|\|y\| .
$$

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional.

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional. We claim that $\left(X \otimes Y,\| \|_{\pi}\right)$ is not complete.

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional. We claim that $\left(X \otimes Y,\| \|_{\pi}\right)$ is not complete.
Indeed, take a biortogonal system $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y, with $f_{n}\left(x_{m}\right)=g_{n}\left(y_{m}\right)=\delta_{n, m}$.

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional. We claim that $\left(X \otimes Y,\| \| \|_{\pi}\right)$ is not complete.
Indeed, take a biortogonal system $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y, with $f_{n}\left(x_{m}\right)=g_{n}\left(y_{m}\right)=\delta_{n, m}$.
The series $\sum_{n \in \mathbb{N}} \frac{1}{2^{n}} x_{n} \otimes y_{n}$ is not convergent in $X \otimes Y$.

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional. We claim that $\left(X \otimes Y,\| \| \|_{\pi}\right)$ is not complete.
Indeed, take a biortogonal system $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y, with $f_{n}\left(x_{m}\right)=g_{n}\left(y_{m}\right)=\delta_{n, m}$.
The series $\sum_{n \in \mathbb{N}} \frac{1}{2^{n}} x_{n} \otimes y_{n}$ is not convergent in $X \otimes Y$. If, by contradiction, there existed $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n} \otimes y_{n} \in X \otimes Y$, write $u=\sum_{i=1}^{p} a_{i} \otimes b_{i}$.

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional. We claim that $\left(X \otimes Y,\| \| \|_{\pi}\right)$ is not complete. Indeed, take a biortogonal system $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y, with $f_{n}\left(x_{m}\right)=g_{n}\left(y_{m}\right)=\delta_{n, m}$.
The series $\sum_{n \in \mathbb{N}} \frac{1}{2^{n}} x_{n} \otimes y_{n}$ is not convergent in $X \otimes Y$. If, by contradiction, there existed $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n} \otimes y_{n} \in X \otimes Y$, write $u=\sum_{i=1}^{p} a_{i} \otimes b_{i}$. Given $f \in S_{X^{*}}$ and $g \in S_{Y^{*}}$, the bilinear form $(f \otimes g)(u, v):=f(u) g(v)$ acts linear and boundedly on $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$.

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional. We claim that $\left(X \otimes Y,\| \| \|_{\pi}\right)$ is not complete.
Indeed, take a biortogonal system $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y, with $f_{n}\left(x_{m}\right)=g_{n}\left(y_{m}\right)=\delta_{n, m}$.
The series $\sum_{n \in \mathbb{N}} \frac{1}{2^{n}} x_{n} \otimes y_{n}$ is not convergent in $X \otimes Y$. If, by contradiction, there existed $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n} \otimes y_{n} \in X \otimes Y$, write $u=\sum_{i=1}^{p} a_{i} \otimes b_{i}$. Given $f \in S_{X^{*}}$ and $g \in S_{Y^{*}}$, the bilinear form $(f \otimes g)(u, v):=f(u) g(v)$ acts linear and boundedly on $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$. Hence

$$
(f \otimes g)(u)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x_{n}\right) g\left(y_{n}\right)=g\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x_{n}\right) y_{n}\right) .
$$

Projective norm. Infinite-dimensional case

Let X and Y be infinite dimensional. We claim that $\left(X \otimes Y,\| \| \|_{\pi}\right)$ is not complete.
Indeed, take a biortogonal system $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y, with $f_{n}\left(x_{m}\right)=g_{n}\left(y_{m}\right)=\delta_{n, m}$.
The series $\sum_{n \in \mathbb{N}} \frac{1}{2^{n}} x_{n} \otimes y_{n}$ is not convergent in $X \otimes Y$. If, by contradiction, there existed $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n} \otimes y_{n} \in X \otimes Y$, write $u=\sum_{i=1}^{p} a_{i} \otimes b_{i}$. Given $f \in S_{X^{*}}$ and $g \in S_{Y^{*}}$, the bilinear form $(f \otimes g)(u, v):=f(u) g(v)$ acts linear and boundedly on $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$. Hence

$$
(f \otimes g)(u)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x_{n}\right) g\left(y_{n}\right)=g\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x_{n}\right) y_{n}\right) .
$$

By the same reason, $(f \otimes g)(u)=g\left(\sum_{i=1}^{p} f\left(a_{i}\right) b_{i}\right)$.

Projective norm. Infinite-dimensional case

- $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y biortogonal systems.
- $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n} \otimes y_{n}=\sum_{i=1}^{p} a_{i} \otimes b_{i}$

The arbitrariness of g implies $\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x_{n}\right) y_{n}=\sum_{i=1}^{p} f\left(a_{i}\right) b_{i} \forall f$.

Projective norm. Infinite-dimensional case

- $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y biortogonal systems.
- $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n} \otimes y_{n}=\sum_{i=1}^{p} a_{i} \otimes b_{i}$

The arbitrariness of g implies $\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x_{n}\right) y_{n}=\sum_{i=1}^{p} f\left(a_{i}\right) b_{i} \forall f$. Evaluating at f_{n} we get $\frac{1}{2^{n}} y_{n}=\sum_{i=1}^{p} f_{n}\left(a_{i}\right) b_{i} \in \operatorname{span}\left\{b_{1}, \ldots, b_{p}\right\}$,

Projective norm. Infinite-dimensional case

- $\left(\left\{x_{n}\right\},\left\{f_{n}\right\}\right)_{n \in \mathbb{N}}$ in X and $\left(\left\{y_{n}\right\},\left\{g_{n}\right\}\right)_{n \in \mathbb{N}}$ in Y biortogonal systems.
- $u=\sum_{n=1}^{\infty} \frac{1}{2^{n}} x_{n} \otimes y_{n}=\sum_{i=1}^{p} a_{i} \otimes b_{i}$

The arbitrariness of g implies $\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(x_{n}\right) y_{n}=\sum_{i=1}^{p} f\left(a_{i}\right) b_{i} \forall f$. Evaluating at f_{n} we get $\frac{1}{2^{n}} y_{n}=\sum_{i=1}^{p} f_{n}\left(a_{i}\right) b_{i} \in \operatorname{span}\left\{b_{1}, \ldots, b_{p}\right\}$, which is impossible since $\left\{y_{n}: n \in \mathbb{N}\right\}$ is linearly independent.

The projective tensor product

Projective tensor product

Given two Banach spaces X and Y, the projective tensor product of X and Y, denoted by $X \widehat{\otimes}_{\pi} Y$, is defined as the completion of $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$.

The projective tensor product

Projective tensor product

Given two Banach spaces X and Y, the projective tensor product of X and Y, denoted by $X \widehat{\otimes}_{\pi} Y$, is defined as the completion of $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$.

There are more norm which can be defined on $X \otimes Y$, like the injective norm, which is defined as

$$
\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|_{\varepsilon}=\sup \left\{\sum_{i=1}^{n} x^{*}\left(x_{i}\right) y^{*}\left(y_{i}\right): x^{*} \in B_{X^{*}}, y^{*} \in B_{Y^{*}}\right\}
$$

The projective tensor product

Projective tensor product

Given two Banach spaces X and Y, the projective tensor product of X and Y, denoted by $X \widehat{\otimes}_{\pi} Y$, is defined as the completion of $\left(X \otimes Y,\|\cdot\|_{\pi}\right)$.

There are more norm which can be defined on $X \otimes Y$, like the injective norm, which is defined as

$$
\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|_{\varepsilon}=\sup \left\{\sum_{i=1}^{n} x^{*}\left(x_{i}\right) y^{*}\left(y_{i}\right): x^{*} \in B_{X^{*}}, y^{*} \in B_{Y^{*}}\right\}
$$

This norm satisfies $\|u\|_{\varepsilon} \leq\|u\|_{\pi}$, and this is the operator norm when we view $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ as an operator

$$
\begin{array}{ccc}
X^{*} & \longrightarrow & Y \\
x^{*} & \longmapsto & \sum_{i=1}^{n} x^{*}\left(x_{i}\right) y_{i} .
\end{array}
$$

The dual of $X \widehat{\otimes}_{\pi} Y(\mathrm{I})$

The dual of $X \widehat{\otimes}_{\pi} Y(\mathrm{I})$

- Given $B \in \mathcal{B}(X \times Y)$ and $T_{B}: X \otimes Y \longrightarrow \mathbb{K}$ its linearising operator.

The dual of $X \widehat{\otimes}_{\pi} Y(\mathrm{I})$

- Given $B \in \mathcal{B}(X \times Y)$ and $T_{B}: X \otimes Y \longrightarrow \mathbb{K}$ its linearising operator.As bilinear mapping it acts on $X \otimes Y$.

The dual of $X \widehat{\otimes}_{\pi} Y(\mathrm{I})$

- Given $B \in \mathcal{B}(X \times Y)$ and $T_{B}: X \otimes Y \longrightarrow \mathbb{K}$ its linearising operator.As bilinear mapping it acts on $X \otimes Y$.
- Given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

The dual of $X \widehat{\otimes}_{\pi} Y(\mathrm{I})$

- Given $B \in \mathcal{B}(X \times Y)$ and $T_{B}: X \otimes Y \longrightarrow \mathbb{K}$ its linearising operator.As bilinear mapping it acts on $X \otimes Y$.
- Given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

$$
\left|T_{B}(u)\right|
$$

The dual of $X \widehat{\otimes}_{\pi} Y$ (I)

- Given $B \in \mathcal{B}(X \times Y)$ and $T_{B}: X \otimes Y \longrightarrow \mathbb{K}$ its linearising operator.As bilinear mapping it acts on $X \otimes Y$.
- Given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

$$
\left|T_{B}(u)\right|=\left|\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right)\right| \leq \sum_{i=1}^{n}\left|B\left(x_{i}, y_{i}\right)\right|
$$

The dual of $X \widehat{\otimes}_{\pi} Y$ (I)

- Given $B \in \mathcal{B}(X \times Y)$ and $T_{B}: X \otimes Y \longrightarrow \mathbb{K}$ its linearising operator.As bilinear mapping it acts on $X \otimes Y$.
- Given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

$$
\left|T_{B}(u)\right|=\left|\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right)\right| \leq \sum_{i=1}^{n}\left|B\left(x_{i}, y_{i}\right)\right| \leq\|B\| \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\|
$$

The dual of $X \widehat{\otimes}_{\pi} Y(\mathrm{I})$

- Given $B \in \mathcal{B}(X \times Y)$ and $T_{B}: X \otimes Y \longrightarrow \mathbb{K}$ its linearising operator.As bilinear mapping it acts on $X \otimes Y$.
- Given $u \in X \otimes Y$, for any representation $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$:

$$
\left|T_{B}(u)\right|=\left|\sum_{i=1}^{n} B\left(x_{i}, y_{i}\right)\right| \leq \sum_{i=1}^{n}\left|B\left(x_{i}, y_{i}\right)\right| \leq\|B\| \sum_{i=1}^{n}\left\|x_{i}\right\|\left\|y_{i}\right\| .
$$

- Taking inf. in repr. of $u \Rightarrow\left|T_{B}(u)\right| \leq\|B\|\|u\|_{\pi}$. This proves that T_{B} acts linear and continuously on $X \otimes Y$ (hence on $X \widehat{\otimes}_{\pi} Y$) and $\left\|T_{B}\right\|_{\pi} \leq\|B\|$.

The dual of $X \widehat{\otimes}_{\pi} Y$ (II)

Moreover, given $x \in B_{X}$ and $y \in B_{Y}$ we have
$|B(x, y)|$

The dual of $X \widehat{\otimes}_{\pi} Y$ (II)

Moreover, given $x \in B_{X}$ and $y \in B_{Y}$ we have

$$
|B(x, y)|=\left|T_{B}(x \otimes y)\right|
$$

The dual of $X \widehat{\otimes}_{\pi} Y$ (II)

Moreover, given $x \in B_{X}$ and $y \in B_{Y}$ we have

$$
|B(x, y)|=\left|T_{B}(x \otimes y)\right| \leq\left\|T_{B}\right\|_{\pi}\|x\|\|y\|=\left\|T_{B}\right\|_{\pi} .
$$

The dual of $X \widehat{\otimes}_{\pi} Y$ (II)

Moreover, given $x \in B_{X}$ and $y \in B_{Y}$ we have

$$
|B(x, y)|=\left|T_{B}(x \otimes y)\right| \leq\left\|T_{B}\right\|_{\pi}\|x\|\|y\|=\left\|T_{B}\right\|_{\pi}
$$

Taking supremum on x, y we infer $\|B\| \leq\left\|T_{B}\right\|_{\pi}$ and, consequently, $\left\|T_{B}\right\|_{\pi}=\|B\|$.

The dual of $X \widehat{\otimes}_{\pi} Y$ (II)

Moreover, given $x \in B_{X}$ and $y \in B_{Y}$ we have

$$
|B(x, y)|=\left|T_{B}(x \otimes y)\right| \leq\left\|T_{B}\right\|_{\pi}\|x\|\|y\|=\left\|T_{B}\right\|_{\pi}
$$

Taking supremum on x, y we infer $\|B\| \leq\left\|T_{B}\right\|_{\pi}$ and, consequently, $\left\|T_{B}\right\|_{\pi}=\|B\|$.
Finally, given $\varphi \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$, set $B(x, y):=\varphi(x \otimes y)$, we get $B \in \mathcal{B}(X \times Y)$

The dual of $X \widehat{\otimes}_{\pi} Y$ (II)

Moreover, given $x \in B_{X}$ and $y \in B_{Y}$ we have

$$
|B(x, y)|=\left|T_{B}(x \otimes y)\right| \leq\left\|T_{B}\right\|_{\pi}\|x\|\|y\|=\left\|T_{B}\right\|_{\pi} .
$$

Taking supremum on x, y we infer $\|B\| \leq\left\|T_{B}\right\|_{\pi}$ and, consequently, $\left\|T_{B}\right\|_{\pi}=\|B\|$.
Finally, given $\varphi \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$, set $B(x, y):=\varphi(x \otimes y)$, we get $B \in \mathcal{B}(X \times Y)$ and $T_{B}-\varphi=0$ on $X \otimes Y$, so $T_{B}=\varphi$.

The dual of $X \widehat{\otimes}_{\pi} Y$ (III)

The dual of $X \widehat{\otimes}_{\pi} Y$ (III)

Theorem

The mapping

$$
\begin{array}{clcc}
\mathcal{B}(X \times Y) & \longrightarrow & \left(X \widehat{\otimes}_{\pi} Y\right)^{*} \\
B & \longmapsto & T_{B}
\end{array}
$$

is an onto linear isometry

The dual of $X \widehat{\otimes}_{\pi} Y$ (III)

Theorem

The mapping

$$
\begin{array}{rlc}
\mathcal{B}(X \times Y) & \longrightarrow\left(X \widehat{\otimes}_{\pi} Y\right)^{*} \\
B & \longmapsto & T_{B}
\end{array}
$$

is an onto linear isometry

Moreover, the natural onto linear isometry

$$
\begin{array}{clc}
\mathcal{B}(X \times Y) & \longrightarrow & L\left(X, Y^{*}\right) \\
B & \longrightarrow & T(x):=B(x, \cdot)
\end{array}
$$

makes in practice to write $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=L\left(X, Y^{*}\right)=B(X \times Y)$.

The linearisation property

Another consequence of the above ideas is that the mapping

$$
\begin{array}{clc}
\mathcal{B}(X \times Y, Z) & \longrightarrow & L\left(X \widehat{\otimes}_{\pi} Y, Z\right) \\
B & \longmapsto & T_{B}(x \otimes y):=B(x, y) .
\end{array}
$$

establishes an onto linear isometry (and more often than not, the identification is replaced with an "equality").

The linearisation property

Another consequence of the above ideas is that the mapping

$$
\begin{array}{clc}
\mathcal{B}(X \times Y, Z) & \longrightarrow & L\left(X \widehat{\otimes}_{\pi} Y, Z\right) \\
B & \longmapsto & T_{B}(x \otimes y):=B(x, y) .
\end{array}
$$

establishes an onto linear isometry (and more often than not, the identification is replaced with an "equality"). Moreover, this gives the desired linearisation property of projective tensor products.

A consequence of the duality $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$

A consequence of the duality $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$

Corollary

Let X and Y be two Banach spaces. Then

$$
B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right)
$$

A consequence of the duality $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$

Corollary

Let X and Y be two Banach spaces. Then

$$
B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right)
$$

It is equivalent to proving that $B_{X} \otimes B_{Y}$ is norming for $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$.

A consequence of the duality $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$

Corollary

Let X and Y be two Banach spaces. Then

$$
B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right) .
$$

It is equivalent to proving that $B_{X} \otimes B_{Y}$ is norming for $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$. Given $\varphi \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$,

$$
\|\varphi\|_{\left(X \widehat{\otimes}_{\pi} Y\right)^{*}}
$$

A consequence of the duality $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$

Corollary

Let X and Y be two Banach spaces. Then

$$
B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right)
$$

It is equivalent to proving that $B_{X} \otimes B_{Y}$ is norming for $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$. Given $\varphi \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$,

$$
\|\varphi\|_{\left(X \widehat{\otimes}_{\pi} Y\right)^{*}}=\|\varphi\|_{\mathcal{B}(X \times Y)}=\sup _{x \in B_{X}, y \in B_{Y}} \varphi(x, y)
$$

A consequence of the duality $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$

Corollary

Let X and Y be two Banach spaces. Then

$$
B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right) .
$$

It is equivalent to proving that $B_{X} \otimes B_{Y}$ is norming for $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$. Given $\varphi \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$,

$$
\|\varphi\|_{\left(X \widehat{\otimes}_{\pi} Y\right)^{*}}=\|\varphi\|_{\mathcal{B}(X \times Y)}=\sup _{x \in B_{X}, y \in B_{Y}} \varphi(x, y)=\sup _{x \otimes y \in B_{X} \otimes B_{Y}} \varphi(x \otimes y) .
$$

A consequence of the duality $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$

Corollary

Let X and Y be two Banach spaces. Then

$$
B_{X \widehat{\otimes}_{\pi} Y}=\overline{\operatorname{conv}}\left(B_{X} \otimes B_{Y}\right)
$$

It is equivalent to proving that $B_{X} \otimes B_{Y}$ is norming for $\left(X \widehat{\otimes}_{\pi} Y\right)^{*}$. Given $\varphi \in\left(X \widehat{\otimes}_{\pi} Y\right)^{*}=\mathcal{B}(X \times Y)$,

$$
\|\varphi\|_{\left(X \widehat{\otimes}_{\pi} Y\right)^{*}}=\|\varphi\|_{\mathcal{B}(X \times Y)}=\sup _{x \in B_{X}, y \in B_{Y}} \varphi(x, y)=\sup _{x \otimes y \in B_{X} \otimes B_{Y}} \varphi(x \otimes y) .
$$

It remains a standard application of Hahn-Banach theorem.

