## Distances between $\mathcal{C}(K)$ spaces

Jakub Rondoš

Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University
jakub.rondos@gmail.com
July 19, 2023

## Various distances

Let $E_{1}, E_{2}$ be Banach spaces. We define:

## Various distances

Let $E_{1}, E_{2}$ be Banach spaces. We define:
(i) $d_{B M}\left(E_{1}, E_{2}\right)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: E_{1} \rightarrow E_{2}\right.$ is a surjective (bounded, linear) isomorphism\} (the Banach-Mazur distance),

## Various distances

Let $E_{1}, E_{2}$ be Banach spaces. We define:
(i) $d_{B M}\left(E_{1}, E_{2}\right)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: E_{1} \rightarrow E_{2}\right.$ is a surjective (bounded, linear) isomorphism\} (the Banach-Mazur distance),
(ii) $d_{\operatorname{Lip}}\left(E_{1}, E_{2}\right)=\inf \left\{\operatorname{Lip}(T) \operatorname{Lip}\left(T^{-1}\right): T: E_{1} \rightarrow E_{2}\right.$ is a bi-Lispchitz bijection \} (the Lipschitz distance),

## Various distances

Let $E_{1}, E_{2}$ be Banach spaces. We define:
(i) $d_{B M}\left(E_{1}, E_{2}\right)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: E_{1} \rightarrow E_{2}\right.$ is a surjective (bounded, linear) isomorphism $\}$ (the Banach-Mazur distance),
(ii) $d_{\operatorname{Lip}}\left(E_{1}, E_{2}\right)=\inf \left\{\operatorname{Lip}(T) \operatorname{Lip}\left(T^{-1}\right): T: E_{1} \rightarrow E_{2}\right.$ is a bi-Lispchitz bijection $\}$ (the Lipschitz distance),
(iii) $d_{u}\left(E_{1}, E_{2}\right)=\inf \left\{I_{\infty}(T) I_{\infty}\left(T^{-1}\right): T: E_{1} \rightarrow E_{2}\right.$ is a uniform homeomorphism $\}$, (the uniform distance), where

$$
I_{\infty}(T)=\inf _{\theta>0}\left(\sup _{\|x-y\| \geq \theta}\left\|\frac{T x-T y}{x-y}\right\|\right)
$$

(the Lipschitz constant at infinity)

## Various distances

Let $E_{1}, E_{2}$ be Banach spaces. We define:
(i) $d_{B M}\left(E_{1}, E_{2}\right)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: E_{1} \rightarrow E_{2}\right.$ is a surjective (bounded, linear) isomorphism $\}$ (the Banach-Mazur distance),
(ii) $d_{\operatorname{Lip}}\left(E_{1}, E_{2}\right)=\inf \left\{\operatorname{Lip}(T) \operatorname{Lip}\left(T^{-1}\right): T: E_{1} \rightarrow E_{2}\right.$ is a bi-Lispchitz bijection $\}$ (the Lipschitz distance),
(iii) $d_{u}\left(E_{1}, E_{2}\right)=\inf \left\{I_{\infty}(T) I_{\infty}\left(T^{-1}\right): T: E_{1} \rightarrow E_{2}\right.$ is a uniform homeomorphism $\}$, (the uniform distance), where

$$
I_{\infty}(T)=\inf _{\theta>0}\left(\sup _{\|x-y\| \geq \theta}\left\|\frac{T x-T y}{x-y}\right\|\right)
$$

(the Lipschitz constant at infinity)
and the distances are defined to be $\infty$ if the spaces $E_{1}, E_{2}$ are not linearly isomorphic, Lipschitz isomorphic, or uniformly homeomorphic, respectively.

## Various distances

Let $E_{1}, E_{2}$ be Banach spaces. We define:
(i) $d_{B M}\left(E_{1}, E_{2}\right)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: E_{1} \rightarrow E_{2}\right.$ is a surjective (bounded, linear) isomorphism\} (the Banach-Mazur distance),
(ii) $d_{\operatorname{Lip}}\left(E_{1}, E_{2}\right)=\inf \left\{\operatorname{Lip}(T) \operatorname{Lip}\left(T^{-1}\right): T: E_{1} \rightarrow E_{2}\right.$ is a bi-Lispchitz bijection $\}$ (the Lipschitz distance),
(iii) $d_{u}\left(E_{1}, E_{2}\right)=\inf \left\{I_{\infty}(T) I_{\infty}\left(T^{-1}\right): T: E_{1} \rightarrow E_{2}\right.$ is a uniform homeomorphism $\}$, (the uniform distance), where

$$
I_{\infty}(T)=\inf _{\theta>0}\left(\sup _{\|x-y\| \geq \theta}\left\|\frac{T x-T y}{x-y}\right\|\right)
$$

(the Lipschitz constant at infinity)
and the distances are defined to be $\infty$ if the spaces $E_{1}$, $E_{2}$ are not linearly isomorphic, Lipschitz isomorphic, or uniformly homeomorphic, respectively. If $T$ is a bounded linear operator, then $\operatorname{Lip}(T)=\|T\|$ and if $T$ is Lipschitz, then $I_{\infty}(T) \leq \operatorname{Lip}(T)$, and thus

$$
d_{u}\left(E_{1}, E_{2}\right) \leq d_{L i p}\left(E_{1}, E_{2}\right) \leq d_{B M}\left(E_{1}, E_{2}\right)
$$

## Comparison of the distances on $\mathcal{C}(K)$ spaces

Some of the most important results concerning the comparison of various distances between $\mathcal{C}(K)$ spaces are the following:

## Comparison of the distances on $\mathcal{C}(K)$ spaces

Some of the most important results concerning the comparison of various distances between $\mathcal{C}(K)$ spaces are the following:
(i) $\mathrm{A} \mathcal{C}(K)$ space is uniformly homeomorphic to $\mathcal{C}([0, \omega])$ iff it linearly isomorphic to it (Johnson, Lindenstrauus, Schechtman, 1996), that is,

$$
d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty \Longleftrightarrow d_{u}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty
$$

## Comparison of the distances on $\mathcal{C}(K)$ spaces

Some of the most important results concerning the comparison of various distances between $\mathcal{C}(K)$ spaces are the following:
(i) $\mathrm{A} \mathcal{C}(K)$ space is uniformly homeomorphic to $\mathcal{C}([0, \omega])$ iff it linearly isomorphic to it (Johnson, Lindenstrauus, Schechtman, 1996), that is,

$$
d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty \Longleftrightarrow d_{u}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty
$$

(ii) A Banach space $E$ is Lipschitz isomorphic to $\mathcal{C}([0, \omega])$ iff it linearly isomorphic to it (Godefroy, Calton, Lancien, 2000), that is,

$$
\left.d_{B M}(\mathcal{C}([0, \omega]), E)\right)<\infty \Longleftrightarrow d_{L i p}(\mathcal{C}([0, \omega]), E)<\infty
$$

## Comparison of the distances on $\mathcal{C}(K)$ spaces

Some of the most important results concerning the comparison of various distances between $\mathcal{C}(K)$ spaces are the following:
(i) $\mathrm{A} \mathcal{C}(K)$ space is uniformly homeomorphic to $\mathcal{C}([0, \omega])$ iff it linearly isomorphic to it (Johnson, Lindenstrauus, Schechtman, 1996), that is,

$$
d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty \Longleftrightarrow d_{u}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty
$$

(ii) A Banach space $E$ is Lipschitz isomorphic to $\mathcal{C}([0, \omega])$ iff it linearly isomorphic to it (Godefroy, Calton, Lancien, 2000), that is,

$$
\left.d_{B M}(\mathcal{C}([0, \omega]), E)\right)<\infty \Longleftrightarrow d_{L i p}(\mathcal{C}([0, \omega]), E)<\infty
$$

(iii) There exists a $\mathcal{C}(K)$ space which Lipschitz isomorphic to $c_{0}\left(\omega_{\omega}\right)$ but not linearly isomorphic to it (Marciszewski, 2003).

## Comparison of the distances on $\mathcal{C}(K)$ spaces

Some of the most important results concerning the comparison of various distances between $\mathcal{C}(K)$ spaces are the following:
(i) $\mathrm{A} \mathcal{C}(K)$ space is uniformly homeomorphic to $\mathcal{C}([0, \omega])$ iff it linearly isomorphic to it (Johnson, Lindenstrauus, Schechtman, 1996), that is,

$$
d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty \Longleftrightarrow d_{u}(\mathcal{C}([0, \omega]), \mathcal{C}(K))<\infty
$$

(ii) A Banach space $E$ is Lipschitz isomorphic to $\mathcal{C}([0, \omega])$ iff it linearly isomorphic to it (Godefroy, Calton, Lancien, 2000), that is,

$$
\left.d_{B M}(\mathcal{C}([0, \omega]), E)\right)<\infty \Longleftrightarrow d_{L i p}(\mathcal{C}([0, \omega]), E)<\infty
$$

(iii) There exists a $\mathcal{C}(K)$ space which Lipschitz isomorphic to $c_{0}\left(\omega_{\omega}\right)$ but not linearly isomorphic to it (Marciszewski, 2003).

- The problem of determining which compact spaces $L$ can replace $[0, \omega]$ in the above results is wide open.


## About the Banach-Mazur distance

- Among the distances between $\mathcal{C}(K)$ spaces, the Banach-Mazur distance is by far the most understood one (and still, there is not so much known about it).


## About the Banach-Mazur distance

- Among the distances between $\mathcal{C}(K)$ spaces, the Banach-Mazur distance is by far the most understood one (and still, there is not so much known about it).
- The only values of the Banach-Mazur distance that are known to be attained between $C(K)$ spaces are 1,2 and 3 .


## About the Banach-Mazur distance

- Among the distances between $\mathcal{C}(K)$ spaces, the Banach-Mazur distance is by far the most understood one (and still, there is not so much known about it).
- The only values of the Banach-Mazur distance that are known to be attained between $C(K)$ spaces are 1,2 and 3 .
- Further, whenever a $C(K)$ space is isomorphic to $c_{0}$, then $d_{B M}\left(C(K), c_{0}\right)$ is an odd integer, and for each odd natural number $m$ other than 1 there exists a $C(K)$ space such that $d_{B M}\left(c_{0}, C(K)\right)=m$ (Candido, 2018).


## About the Banach-Mazur distance

- Among the distances between $\mathcal{C}(K)$ spaces, the Banach-Mazur distance is by far the most understood one (and still, there is not so much known about it).
- The only values of the Banach-Mazur distance that are known to be attained between $C(K)$ spaces are 1,2 and 3 .
- Further, whenever a $C(K)$ space is isomorphic to $c_{0}$, then $d_{B M}\left(C(K), c_{0}\right)$ is an odd integer, and for each odd natural number $m$ other than 1 there exists a $C(K)$ space such that $d_{B M}\left(c_{0}, C(K)\right)=m$ (Candido, 2018).


## Problem (probably due to Pelczynski)

Is the Banach-Mazur distance between two isomorphic $\mathcal{C}(K)$ spaces always an integer?

## The linear distance 2

- $K_{1}, K_{2}$ are homeomorphic $\Longleftrightarrow \mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)$ are isometric (Banach-Stone, 1937).


## The linear distance 2

- $K_{1}, K_{2}$ are homeomorphic $\Longleftrightarrow \mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)$ are isometric (Banach-Stone, 1937).
- $K_{1}, K_{2}$ are homeomorphic $\Longleftrightarrow d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)<2$ (independently Amir, 1965 and Cambern, 1966). Thus, there are no compact spaces $K_{1}, K_{2}$ such that $1<d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)<2$.


## The linear distance 2

- $K_{1}, K_{2}$ are homeomorphic $\Longleftrightarrow \mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)$ are isometric (Banach-Stone, 1937).
- $K_{1}, K_{2}$ are homeomorphic $\Longleftrightarrow d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)<2$ (independently Amir, 1965 and Cambern, 1966). Thus, there are no compact spaces $K_{1}, K_{2}$ such that $1<d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)<2$.
- (Cohen, 1975) and (Chu, Cohen, 1995) provided examples of pairs of $\mathcal{C}(K)$ spaces where the distance 2 is attained.


## The nonlinear distance 2

- Several authors have been working on nonlinear versions of the Amir-Cambern theorem, in the sense that they proved results saying that if a certain nonlinear distance between $\mathcal{C}(K)$ spaces is small, then the underlying compact spaces must be homeomorphic. There were results in this direction proved by (Jarosz, 1989), (Dutrieux and Kalton, 2005), (Górak, 2011), and (Galego and Porto da Silva, 2016).


## The nonlinear distance 2

- Several authors have been working on nonlinear versions of the Amir-Cambern theorem, in the sense that they proved results saying that if a certain nonlinear distance between $\mathcal{C}(K)$ spaces is small, then the underlying compact spaces must be homeomorphic. There were results in this direction proved by (Jarosz, 1989), (Dutrieux and Kalton, 2005), (Górak, 2011), and (Galego and Porto da Silva, 2016).
- The strongest and most general result so far was proved in (Galego and Porto da Silva, 2016), which in particular proves the equivalence

$$
K_{1}, K_{2} \text { are homeomorphic } \Longleftrightarrow d_{u}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)<2
$$

valid for all compact spaces $K_{1}, K_{2}$ (recall that this constant is optimal even in the linear case).

## The nonlinear distance 2

- Several authors have been working on nonlinear versions of the Amir-Cambern theorem, in the sense that they proved results saying that if a certain nonlinear distance between $\mathcal{C}(K)$ spaces is small, then the underlying compact spaces must be homeomorphic. There were results in this direction proved by (Jarosz, 1989), (Dutrieux and Kalton, 2005), (Górak, 2011), and (Galego and Porto da Silva, 2016).
- The strongest and most general result so far was proved in (Galego and Porto da Silva, 2016), which in particular proves the equivalence

$$
K_{1}, K_{2} \text { are homeomorphic } \Longleftrightarrow d_{u}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)<2
$$

valid for all compact spaces $K_{1}, K_{2}$ (recall that this constant is optimal even in the linear case).

- It follows that the spaces $\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)$ mentioned in the previous slide satisfy

$$
d_{u}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)=d_{L i p}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)=d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right)=2
$$

## Derivatives

In the rest of the talk, only the Banach-Mazur distance will be considered (because there is nothing in this direction known about nonlinear distances).

## Derivatives

In the rest of the talk, only the Banach-Mazur distance will be considered (because there is nothing in this direction known about nonlinear distances).
If $K$ is compact and $\alpha$ an ordinal, then the Cantor-Bendixon derivative of $K$ of order $\alpha$ is

$$
\begin{aligned}
& K^{(0)}=K, \\
& K^{(1)}=\{x \in K: x \text { is an accumulation point of } K\}, \\
& K^{(\alpha)}=\left(K^{\beta}\right)^{(1)}, \quad \alpha=\beta+1, \\
& K^{(\alpha)}=\bigcap_{\beta<\alpha} K^{(\beta)}, \quad \alpha \text { limit. }
\end{aligned}
$$

$K$ is scattered if there exists $\alpha$ such that $K^{(\alpha)}=\emptyset$. In that case, the smallest ordinal $\alpha$ such that $K^{(\alpha)}=\emptyset$ is called height of $K$, denoted by $h t(K)$ (and it is a successor ordinal).

## The linear distance 3

- If there exists an ordinal $\alpha$ such that $\left|K_{1}^{(\alpha)}\right| \neq\left|K_{2}^{(\alpha)}\right|$, then $d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right) \geq 3$ (Gordon, 1970).


## The linear distance 3

- If there exists an ordinal $\alpha$ such that $\left|K_{1}^{(\alpha)}\right| \neq\left|K_{2}^{(\alpha)}\right|$, then $d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right) \geq 3$ (Gordon, 1970).
- This applies in particular in the following cases:
(i) $K_{1}, K_{2}$ are scattered compact spaces of different heights,
(ii) $K_{1}, K_{2}$ are nonhomeomorphic countable compact spaces (because the homeomorphism class of each countable compact space is uniquely determined by its height and the cardinality of the highest nonempty derivative (Mazurkiewicz, Sierpinski, 1920)).


## The linear distance 3

- If there exists an ordinal $\alpha$ such that $\left|K_{1}^{(\alpha)}\right| \neq\left|K_{2}^{(\alpha)}\right|$, then $d_{B M}\left(\mathcal{C}\left(K_{1}\right), \mathcal{C}\left(K_{2}\right)\right) \geq 3$ (Gordon, 1970).
- This applies in particular in the following cases:
(i) $K_{1}, K_{2}$ are scattered compact spaces of different heights,
(ii) $K_{1}, K_{2}$ are nonhomeomorphic countable compact spaces (because the homeomorphism class of each countable compact space is uniquely determined by its height and the cardinality of the highest nonempty derivative (Mazurkiewicz, Sierpinski, 1920)).
- It holds $d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2]))=3$ (Gordon, 1970).


## The distance between $\mathcal{C}([0, \omega])$ and $\mathcal{C}([0, \omega 2])$

- It holds $d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2]))=3$.


## The distance between $\mathcal{C}([0, \omega])$ and $\mathcal{C}([0, \omega 2])$

- It holds $d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2]))=3$.


## Proof.

Since $\left|[0, \omega]^{(1)}\right|=|\{\omega\}|=1$ and $\left|[0, \omega 2]^{(1)}\right|=|\{\omega, \omega 2\}|=2$, $d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2])) \geq 3$ by the theorem of Gordon. On the other hand, it is elementary to check that the mapping $T: \mathcal{C}([0, \omega 2]) \rightarrow \mathcal{C}([0, \omega])$ given by

$$
\begin{aligned}
& \operatorname{Tf}(1)=f(\omega)-f(\omega 2) \\
& \operatorname{Tf}(2 m)=f(m)-\frac{1}{2}(f(\omega)-f(\omega 2)), \quad m \in \mathbb{N}, \\
& \operatorname{Tf}(2 m+1)=f(\omega+m)+\frac{1}{2}(f(\omega)-f(\omega 2)), \quad m \in \mathbb{N}, \\
& \operatorname{Tf}(\omega)=\frac{1}{2}(f(\omega)-f(\omega 2))
\end{aligned}
$$

is a surjective isomorphism with $\|T\|=2$ and $\left\|T^{-1}\right\|=\frac{3}{2}$.

## Distances from $\mathcal{C}([0, \omega])$

- (Candido, Galego, 2013) estimated the distance of $\mathcal{C}([0, \omega])$ from the other $\mathcal{C}(K)$ spaces isomorphic to it with an error of at most 2 . Some of their methods were improved in unpublished notes of Cuth and his student Havelka. The way to find the upper estimates is achieved by using regular matrices to construct certain isomorphisms between the respective spaces (the isomorphism from the previous slide corresponds in this setting to the matrix $\left(\begin{array}{cc}1 & -1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ ).


## Distances from $\mathcal{C}([0, \omega])$

- (Candido, Galego, 2013) estimated the distance of $\mathcal{C}([0, \omega])$ from the other $\mathcal{C}(K)$ spaces isomorphic to it with an error of at most 2 . Some of their methods were improved in unpublished notes of Cuth and his student Havelka. The way to find the upper estimates is achieved by using regular matrices to construct certain isomorphisms between the respective spaces (the isomorphism from the previous slide corresponds in this setting to the matrix $\left(\begin{array}{cc}1 & -1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$ ).
- It is well-known that a $\mathcal{C}(K)$ space is isomorphic to $\mathcal{C}([0, \omega])$ iff $K$ is homeomorphic to $\left[0, \omega^{\alpha} m\right]$ for some $\alpha, m \in \mathbb{N}$ (Bessaga, Pelczynski, 1960).


## Distances from $\mathcal{C}([0, \omega])$

The following estimates are known:

## Distances from $\mathcal{C}([0, \omega])$

The following estimates are known:

$$
d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2]))=3 \quad \text { (Gordon, 1970) }
$$

## Distances from $\mathcal{C}([0, \omega])$

The following estimates are known:

$$
d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2]))=3 \quad(\text { Gordon, 1970 })
$$

$$
\left.3 \leq d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 3])) \leq 4 \quad \text { (Cuth, unpublished }\right)
$$

## Distances from $\mathcal{C}([0, \omega])$

The following estimates are known:

$$
\begin{aligned}
d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2]))=3 \quad \text { (Gordon, 1970). } \\
3 \leq d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 3])) \leq 4 \quad \text { (Cuth, unpublished). }
\end{aligned}
$$

If $m>3$, then

$$
3 \leq d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega m])) \leq 2+\sqrt{5} \quad \text { (Candido, Galego, 2013). }
$$

## Distances from $\mathcal{C}([0, \omega])$

The following estimates are known:

$$
\begin{aligned}
& d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 2]))=3 \quad \text { (Gordon, 1970). } \\
& 3 \leq d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega 3])) \leq 4 \quad \text { (Cuth, unpublished). }
\end{aligned}
$$

If $m>3$, then

$$
3 \leq d_{B M}(\mathcal{C}([0, \omega]), \mathcal{C}([0, \omega m])) \leq 2+\sqrt{5} \quad \text { (Candido, Galego, 2013) }
$$

If $\alpha \in \mathbb{N}$, then

$$
\begin{gathered}
2 \alpha-1 \leq d_{B M}\left(\mathcal{C}([0, \omega]), \mathcal{C}\left(\left[0, \omega^{\alpha}\right]\right)\right) \leq \alpha+\sqrt{(\alpha-1)(\alpha+3)}, \text { and } \\
2 \alpha+1 \leq d_{B M}\left(\mathcal{C}([0, \omega]), \mathcal{C}\left(\left[0, \omega^{\alpha} m\right]\right)\right) \leq \alpha+1+\sqrt{(\alpha(\alpha+4))}
\end{gathered}
$$

if $m>1$.(Candido, Galego, 2013).

## Lower estimates of the distance based on the Cantor-Bendixon derivatives

- The lower bounds from the previous slide were generalized to the context of general scattered spaces in (R., 2021) and (R., Somaglia, 2022) (here the distance is estimated from below based on the heights of the compact spaces), and


## Lower estimates of the distance based on the Cantor-Bendixon derivatives

- The lower bounds from the previous slide were generalized to the context of general scattered spaces in (R., 2021) and (R., Somaglia, 2022) (here the distance is estimated from below based on the heights of the compact spaces), and
- in a recent preprint (R., 2023) further generalized to spaces that need not be scattered (here the distance is estimated from below based on a certain cardinal invariant of Cantor-Bendixon derivatives of the compact spaces).


## Acknowledgement

## Thank you.

