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Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

Notation throughout this talk.

(M, d) is a complete metric space with a distinguished point 0 ∈ M.

We let K = R or C and

Lip0(M) = {f : M → K Lipschitz : f (0) = 0}.

When equipped with the norm

∥f ∥L = Lip(f ) = sup
x ̸=y

|f (x)− f (y)|
d(x , y)

,

it is a Banach space.

Then we consider the evaluation functional δ(x) : Lip0(M) → K defined by
⟨δ(x), f ⟩ = f (x), for every f ∈ Lip0(M).

Definition

The Lipschitz free space over M is the following subspace of Lip0(M)∗:

F(M) := span∥·∥ {δ(x) | x ∈ M} .
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Some properties...

• δ : x ∈ M 7→ δ(x) ∈ F(M) is an isometry.

• F(M)∗ ≡ Lip0(M) ⇝⇝⇝ weak topology = σ(F(M), Lip0(M)).

• If 0 ∈ N ⊂ M, then F(N) ≡ FM(N) := span{δ(x) | x ∈ N} ⊂ F(M).

• “The intersection theorem” [Aliaga – Pernecká, 2020]:

If (Ki )i∈I is a family of closed subsets of M, then⋂
i∈I

FM(Ki ) = FM(
⋂
i∈I

Ki ).

→ This leads to a notion of support for elements γ ∈ F(M):

S = supp(γ) is the smallest closed subset of M such that γ ∈ FM(S).

• [Godefroy – Kalton, 2003]: If X is a separable Banach space, then X is
isometric to a subspace of F(X ).
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...and some classical examples.

• M = Tω
1 = {0} ∪ N the countably branching tree of height 1 (aka “the

spider”).

Then T : δ(n) ∈ F(M) 7→ en ∈ ℓ1(N) is a surjective isometry.

• (M, d) = (N, | · |). T : δ(n) ∈ F(N) 7→
∑n

i=1 ei ∈ ℓ1(N) is a surjective
isometry.

• M = ([0, 1], | · |). T : δ(t) ∈ F([0, 1]) 7→ 1[0,t] ∈ L1([0, 1]) is a surjective
isometry.

• [Godard, 2010]: If S ⊂ R, λ(S) > 0, then L1([0, 1]) ↪→ F(S) ≡ L1(µS).

• [Naor – Schechtmann, 2007] (or [Kisljakov, 1975]): F(R2) ̸↪→ L1([0, 1]).

Question

F(R2) ≃ F(R3)?
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Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

A research program

• Try to characterize the (linear) properties of F(M) in terms of the
(metric) properties of M.

In this talk, we are mainly interested in properties which are related to the
weak topology of F(M).

→ Schur property

→ weak sequential completeness

→ weak compactness

→ ...



Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

A research program

• Try to characterize the (linear) properties of F(M) in terms of the
(metric) properties of M.

In this talk, we are mainly interested in properties which are related to the
weak topology of F(M).

→ Schur property

→ weak sequential completeness

→ weak compactness

→ ...



Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

A research program

• Try to characterize the (linear) properties of F(M) in terms of the
(metric) properties of M.

In this talk, we are mainly interested in properties which are related to the
weak topology of F(M).

→ Schur property

→ weak sequential completeness

→ weak compactness

→ ...



Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

A research program

• Try to characterize the (linear) properties of F(M) in terms of the
(metric) properties of M.

In this talk, we are mainly interested in properties which are related to the
weak topology of F(M).

→ Schur property

→ weak sequential completeness

→ weak compactness

→ ...



Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

A research program

• Try to characterize the (linear) properties of F(M) in terms of the
(metric) properties of M.

In this talk, we are mainly interested in properties which are related to the
weak topology of F(M).

→ Schur property

→ weak sequential completeness

→ weak compactness

→ ...



Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

A research program

• Try to characterize the (linear) properties of F(M) in terms of the
(metric) properties of M.

In this talk, we are mainly interested in properties which are related to the
weak topology of F(M).

→ Schur property

→ weak sequential completeness

→ weak compactness

→ ...



Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

A research program

• Try to characterize the (linear) properties of F(M) in terms of the
(metric) properties of M.

In this talk, we are mainly interested in properties which are related to the
weak topology of F(M).

→ Schur property

→ weak sequential completeness

→ weak compactness

→ ...



Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

Research program bis

Try to characterize the (linear) properties of f̂ : F(M) → F(N) in terms of the
(metric) properties of f : M → N.

Wait! What is f̂ ?

Proposition (Linearisation property)

M
f //

δM

��

N

δN

��
F(M)

f̂

// F(N)

f : M → N is Lipschitz s.t. f (0M) = 0N .

f̂
( n∑

i=1

aiδM(xi )
)
=

n∑
i=1

aiδN
(
f (xi )

)
.

Examples:

• f is bi-Lipschitz if and only if f̂ is a linear embedding.
• f is a Lipschitz retraction if and only if f̂ is a linear projection.
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Definition

FSk(M) := {γ ∈ F(M) : | supp γ| ≤ k}.

Lemma (Aliaga – Noûs – Procházka – P., 2021)

The set FSk(M) is weakly closed.

Theorem

If a sequence (γn)n ⊂ FSk(M) weakly converges to some γ ∈ F(M), then
γ ∈ FSk(M) and (γn)n converges to γ in the norm topology.

→ A (rather elaborated) proof in the case γ = 0 can be found in a paper due
to [Albiac – Kalton, 2009].
→ For a more direct proof by induction, [Abbar – Coine – Petitjean, 2022].
→ A (probably similar) proof is due to [Aliaga – Pernecká – Smith, ????]
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Consequences: Let f : M → N be a Lipschitz map s.t. f (0) = 0.

Proposition (Abbar – Coine – P., 2022)

f̂ is compact ⇐⇒ f̂ is weakly compact.

Proof.
• [Cabrera-Padilla – Jiménez-Vargas, 2016]: f̂ : F(M) → F(N) is (weakly)

compact if and only if

S :=

{
δ(f (x))− δ(f (y))

d(x , y)
| x ̸= y ∈ M

}
is relatively (weakly) compact in F(N).

• S ⊂ FS2(M).

Remark [Abbar – Coine – P., 2023]:
Also works for weighted versions wf̂ of these “Lipschitz operators”.

→ Leads to characterizations (in terms of metric properties of f ) of those
(weighted) Lipschitz operators wf̂ which are (weakly) compact.
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Definition

A Banach space X has the Schur property if: ∀(xn)n ⊂ X ,

xn
w−→ 0 ⇐⇒ xn

∥·∥−→ 0.

Examples:
• ℓ1 has the Schur property (gliding hump technique).

• c0 and ℓp (p > 1) fail it since en
w−→ 0 but ∥en∥ = 1, ∀n ∈ N.

• X reflexive + Schur =⇒ dim(X ) < ∞.
• L1 does not have it since it contains a copy of ℓ2.

Theorem (Kalton, 2004)

If M is bounded and 0 < p < 1 then F(M, dp) has the Schur property.
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Theorem (Kalton, 2004 – Upgraded version)

If lip0(M) separates the points of M uniformly, then F(M) has the Schur
property.

Lemma (Key argument)

If M is bounded then and γn
w−→ 0 then: ∀ε > 0, ∀δ > 0, ∃E ⊂ M finite such

that:
sup
n∈N

dist(γn,F([E ]δ)) < ε,

where [E ]δ = {y ∈ M : d(y ,E) ≤ δ}.

Remark:

sup
n∈N

dist(γn,F([E ]δ)) < ε ⇐⇒ {γn : n ∈ N} ⊂ F([E ]δ) + εBF(M).
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Generalizing this proof, one can get:

Proposition (Aliaga – Noûs – Petitjean – Procházka, 2021)

Let W be a bounded set in F(M). Then:

W is weakly precompact =⇒ W has Kalton’s property.

• A sequence (xn)n is a Banach space X is weakly Cauchy if (⟨x∗, xn⟩)n is
convergent for every x∗ ∈ X ∗.

• W ⊂ X is weakly precompact whenever every sequence admits a weakly
Cauchy subsequence.

• W ⊂ F(M) has Kalton’s property if: ∀ε > 0, ∃δ > 0, ∃E ⊂ M finite s.t.
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• W ⊂ F(M) has Kalton’s property if: ∀ε > 0, ∃δ > 0, ∃E ⊂ M finite s.t.

W ⊂ F([E ]δ) + εBF(M).

Theorem (Aliaga – Noûs – Procházka – P., 2021)

If W has Kalton’s property, then W is tight, that is: ∀ε > 0, ∃K ⊂ M compact
such that

W ⊂ F(K) + εBF(M).

Moreover, there exists a linear map T : span δ(W ) → F(K) s.t.
• ∥µ− Tµ∥ ≤ ε, ∀µ ∈ W ;
• There is a sequence (Tk)k of bounded operators on F(M) such that

Tk → T uniformly on W .

Summary: Weak precompactness =⇒ Kalton’s property ⇐⇒ Tightness.
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1. On the Schur property

Corollary (Aliaga – Noûs – Procházka – P., 2021)

F(M) ∈ (Schur) ⇐⇒ F(K) ∈ (Schur), ∀K ⊂ M compact.

If M is compact:

F(M) ∈ (Schur) L1 ̸↪→ F(M)

[
S ⊂ R, λ(S) > 0 =⇒ S ̸↪→

bi−Lip
M
]

[Godard]

lip0(M) S.P.U.

[Aliaga – Gartland – Procházka –P., 2022][Kalton]
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Therefore for general M:

F(M) ∈ (Schur) ⇐⇒ L1 ̸↪→ F(M) ⇐⇒
[
S ⊂ R, λ(S) > 0 =⇒ S ̸↪→

bi−Lip
M
]
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2. On weak sequential completeness

Definition

A Banach space X is weakly sequentially complete if every weakly Cauchy
sequence in X is actually weakly convergent.

Examples:
• (Schur) =⇒ (w.s.c.)
• (Reflexivity) =⇒ (w.s.c.)
• L1 is w.s.c. (Dunford – Pettis theorem)
• c0 is not w.s.c. (e.g. considering the summing basis)

Remark: Thanks to [Godefroy – Kalton, 2003], c0 is isometric to a subspace of
F(c0), and therefore F(c0) is not w.s.c.
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Corollary (Aliaga – Noûs – Procházka – P., 2021)

F(M) is w.s.c. ⇐⇒ F(K) is w.s.c., ∀K ⊂ M compact.

• [Cuth – Doucha – Wojtaszczyk, 2016]: F([0, 1]n) ↪→ C 1([0, 1]n)∗ and so
it is w.s.c. by a result of [Bourgain, 1983].

• [Kochanek – Pernecká, 2018]: If K is a compact subset of a
superreflexive space S , then F(K) is w.s.c.

Consequences:
• F(S) is w.s.c. for every superreflexive space S .

• For every p ∈ (1,∞), F(ℓp) ̸≃ F(c0).
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• F(S) is w.s.c. for every superreflexive space S .

• For every p ∈ (1,∞), F(ℓp) ̸≃ F(c0).
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Introduction Finitely supported elements From Kalton’s Lemma to tightness Some consequences Open questions

Questions 1: Find a characterization (in terms of properties of M) of those
Lipschitz free spaces F(M) which have:

• A quantitative version of the Schur property;
• The Dunford–Pettis property.
• ...

Remark: The Dunford-Pettis property is also “compactly determined” in free
spaces, but careful with the statement: F(M) has the (DPP) if and only if for
every compact K ⊂ M there is a subset B ⊂ M such that K ⊂ B and F(B)
has the (DPP).

Question 2: Is F(ℓ1) w.s.c.? Is it true that c0 ↪→ F(ℓ1)?

Question 3: Find a characterization of weakly (pre)compact subsets of F(M).

Recall that for a bounded W ⊂ F(M):

W is weakly precompact =⇒ W is tight ⇐⇒ W has Kalton’s property.

But the converse is trivially false: if M is compact then any W ⊂ F(M) (e.g.
W = BF(M)) is tight!

To be continued...
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Muchas gracias por su atención!
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