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I Let me start by stating the main result of the talk.

I A metric space is called locally finite if each ball of finite radius
in it contains finitely many elements.

I Example: The vertex set of an infinite graph with finitely
many edges incident to each vertex and the distance between
vertices u and v defined as the smallest number of edges one
has to walk over to get to v from u.

I A map F :M→ L between two metric spaces (M, dM) and
(L, dL) is called a bilipschitz embedding if there exist
constants C1,C2 > 0 so that for all u, v ∈M

C1dM(u, v) ≤ dL(F (u),F (v)) ≤ C2dM(u, v).

I The distortion of F is defined as Lip(F ) · Lip(F−1|F (M)),
where Lip(·) denotes the Lipschitz constant.

I A bilipschitz embedding whose distortion does not exceed
C ∈ [1,∞) is called C -bilipschitz.

I Theorem 1 (joint work with Florin Catrina and Sofiya
Ostrovska): Given any ε > 0, every locally finite subset of `2
admits a (1 + ε)-bilipschitz embedding into an arbitrary
infinite-dimensional Banach space.
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Some general background

I Since this school is especially aimed at young researchers, I
decided to dedicate more time to description of the area and
less time to technical details of the proofs.

I The stated result is at the intersection of two very important
parts of Banach space theory.

I (1) Asymptotic theory of finite-dimensional Banach spaces,
also called Local Theory if the goal is to apply it to study
infinite-dimensional Banach spaces.

I (2) The theory of Metric Embeddings, or, more precisely, its
part devoted to embeddings of discrete metric spaces into
Banach spaces.

I One of the general directions of the local theory is to
understand, to what extent the structure of the general
infinite-dimensional Banach space resembles the structure of
the Hilbert space.

Mikhail Ostrovskii, St. John’s University



Some general background

I Since this school is especially aimed at young researchers, I
decided to dedicate more time to description of the area and
less time to technical details of the proofs.

I The stated result is at the intersection of two very important
parts of Banach space theory.

I (1) Asymptotic theory of finite-dimensional Banach spaces,
also called Local Theory if the goal is to apply it to study
infinite-dimensional Banach spaces.

I (2) The theory of Metric Embeddings, or, more precisely, its
part devoted to embeddings of discrete metric spaces into
Banach spaces.

I One of the general directions of the local theory is to
understand, to what extent the structure of the general
infinite-dimensional Banach space resembles the structure of
the Hilbert space.

Mikhail Ostrovskii, St. John’s University



Some general background

I Since this school is especially aimed at young researchers, I
decided to dedicate more time to description of the area and
less time to technical details of the proofs.

I The stated result is at the intersection of two very important
parts of Banach space theory.

I (1) Asymptotic theory of finite-dimensional Banach spaces,
also called Local Theory if the goal is to apply it to study
infinite-dimensional Banach spaces.

I (2) The theory of Metric Embeddings, or, more precisely, its
part devoted to embeddings of discrete metric spaces into
Banach spaces.

I One of the general directions of the local theory is to
understand, to what extent the structure of the general
infinite-dimensional Banach space resembles the structure of
the Hilbert space.

Mikhail Ostrovskii, St. John’s University



Some general background

I Since this school is especially aimed at young researchers, I
decided to dedicate more time to description of the area and
less time to technical details of the proofs.

I The stated result is at the intersection of two very important
parts of Banach space theory.

I (1) Asymptotic theory of finite-dimensional Banach spaces,
also called Local Theory if the goal is to apply it to study
infinite-dimensional Banach spaces.

I (2) The theory of Metric Embeddings, or, more precisely, its
part devoted to embeddings of discrete metric spaces into
Banach spaces.

I One of the general directions of the local theory is to
understand, to what extent the structure of the general
infinite-dimensional Banach space resembles the structure of
the Hilbert space.

Mikhail Ostrovskii, St. John’s University



Some general background

I Since this school is especially aimed at young researchers, I
decided to dedicate more time to description of the area and
less time to technical details of the proofs.

I The stated result is at the intersection of two very important
parts of Banach space theory.

I (1) Asymptotic theory of finite-dimensional Banach spaces,
also called Local Theory if the goal is to apply it to study
infinite-dimensional Banach spaces.

I (2) The theory of Metric Embeddings, or, more precisely, its
part devoted to embeddings of discrete metric spaces into
Banach spaces.

I One of the general directions of the local theory is to
understand, to what extent the structure of the general
infinite-dimensional Banach space resembles the structure of
the Hilbert space.

Mikhail Ostrovskii, St. John’s University



I The first significant success in this direction was the result of
Dvoretzky and Rogers (1950). By showing that the structure
of the unit ball of any high-dimensional Banach space has
significant similarities with the ball of a Hilbert space they
proved that for any sequence {ai} of positive numbers
satisfying

∑∞
i=1 a

2
i <∞ any infinite-dimensional Banach space

contains a series
∑∞

i=1 xi which is unconditionally convergent
(= converges after any rearrangement) and satisfies ‖xi‖ = ai .

I Grothendieck (1953) analyzed this result of Dvoretzky and
Rogers, and (among other things) conjectured the following
result, somewhat later proved by Dvoretzky (announcement -
1959, publication - 1961).
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I Dvoretzky Theorem: Let k ∈ N, k ≥ 2, and 0 < ε < 1.
There exists N = N(k , ε) ∈ N so that every normed space
having more than N dimensions - in particular every
infinite-dimensional normed space - has a k-dimensional
subspace whose Banach-Mazur distance from the
k-dimensional Hilbert space is less than (1 + ε).

I If you never saw this result, the following restatement can help
to understand the condition on the Banach-Mazur distance. It
means that there exists a linear map T from a k-dimensional
Euclidean space `k2 (standard notation) into X , for which

‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖.

I In this connection, it is natural to call a result establishing
significant presence of Hilbert space structures in an arbitrary
infinite-dimensional Banach space a Dvoretzky-type theorem.

I Slightly later I shall mention some Dvoretzky-type theorems
and related open problems. Now I would like to remind some
facts about Metric Embeddings.
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I The first step in the study of Metric Embeddings were made
almost simultaneously with the creation of the theory of
metric spaces, namely Frèchet (1910) proved that each
separable metric space embeds isometrically into `∞ and each
n-point metric space embeds isometrically into `n−1∞ .

I After that, the flow of metric embeddings papers never
stopped. As some of the most influential papers of the early
period, I mention papers of Schoenberg of the 1930’s.

I The development of the theory of Metric Embeddings started
to accelerate in the first half of 80s, with the following results
proved by Assouad (1983), Johnson-Lindenstrauss (1984), and
Bourgain (1985).
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I Assouad (1983): If a metric space (M, dM) satisfies the
condition: there exists K <∞ such that each ball in M is
covered by at most K balls of of twice smaller diameter, then
for every p ∈ (0, 1) there exists 1 ≤ C (p,K ) <∞ and
N(p,K ) ∈ N such that (M, dp

M) admits a bilipschitz
embedding into the Euclidean space RN(p,K) with distortion at
most C (p,K ).

I Johnson-Lindenstrauss (1984): For each ε > 0 there exists
K (ε) <∞ such that for each n-element metric space
(M, dM) in `2, there exists an embedding of (M, dM) into
the Euclidean space RK(ε) log2 n with distortion ≤ (1 + ε).

I Bourgain (1985): For each n-element metric space (M, dM)
there exists an embedding into `2 with distortion ≤ C log2 n,
where C is an absolute constant. (Later it was shown that up
to the value of C this result is the best possible.)

I In the 1990s, two important ideas on applications of
embeddings of discrete metric spaces into Banach spaces
emerged:
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I (1) Mikhail Gromov suggested using embeddings of finitely
generated groups associated with topological spaces into
“good” Banach spaces (Hilbert of uniformly convex) as a tool
for solving some significant open problems of Topology.

I For Gromov’s approach it is sufficient to find embeddings
which are weaker than bilipschitz: A map F :M→ L is called
a coarse embedding if there exist nondecreasing, infinite at ∞
functions ρ−, ρ+ : [0,∞)→ [0,∞) so that for all u, v ∈M

ρ−(dM(u, v)) ≤ dL(F (u),F (v)) ≤ ρ+(dM(u, v)).

I The metric spaces in Gromov’s problems are infinite groups G
generated by finite sets S , regarded as vertex sets of infinite
graphs in which two vertices u, v ∈ G are joined by an edge if
and only if u = vs for some s ∈ S (the metric d(u, v) = the
minimal number of multiplication of v by elements of S after
which we get u).

I There was a significant progress along the lines suggested by
Gromov; an (early) summary of it can be found in the
International Congress talk of Guoliang Yu (2006).
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I (2) Linial-London-Rabinovich suggested using bilipschitz
embeddings of finite metric spaces into Banach spaces as a
tool for developing (approximation) algorithms in Computer
Science.

I Let me describe the general idea of this. There are many
computer science problems on finite metric spaces M. Among
these problems there are problems for which fast algorithms
are known if M is a subset of `1 with the induced metric, but
it is believed that there are no such algorithms in general (the
corresponding problems are NP-complete, the standard term
in the theory of Algorithms).

I In many such situations, if the metric space M is not
isometric to a subset of `1, but admits a low-distortion
embedding into `1, we can use the mentioned fast algorithm
for subsets of `1, and get a fast useful approximation of the
solution for M.

I See International Congress (ICM) talks by Linial (2002) and
Naor (2010, 2018) for description of the progress in this
direction. There are also books on Approximation Algorithms.
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I Theorem 1 (Catrina, Ostrovska, & M.O.): Given any
ε > 0, every locally finite subset of `2 admits a
(1 + ε)-bilipschitz embedding into an arbitrary
infinite-dimensional Banach space.

I Remark: Note that there exist (Ostrovska - M.O., 2019)
locally finite subsets of `2 which do not admit isometric
embeddings into some infinite-dimensional Banach spaces,
such as `p, (1 < p <∞, p 6= 2).

I At this point, it is appropriate to present a short overview of
the available Dvoretzky-type results and related open
problems.

I First, we recall the open problem on the validity of a finite
isometric Dvoretzky theorem for all infinite-dimensional
Banach spaces.

I Problem (M.O., 2015): Do there exist a finite subset F of
`2 and an infinite-dimensional Banach space X such that F
does not admit an isometric embedding into X?
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I Weakening of Theorem 1 (M.O. 2006): Each locally finite
subset of `2 admits a coarse embedding into an arbitrary
infinite-dimensional Banach space.

I Using the technique of Baudier-Lancien (2008), different from
that employed in M.O. (2006), this result was strengthened to

I Coming closer to Theorem 1 (M.O. 2009): Each locally
finite subset of `2 admits a bilipschitz embedding into
arbitrary infinite-dimensional Banach space.

I In 2009 I did not try to give an estimate for the distortion, it
is some number below 100, but not far from it. Theorem 1 of
this talk is the best possible result in this direction.
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Failed Dvoretzky type theorem

I As another development, Nowak (2006) showed that the
embedding techniques of Dadarlat-Guentner (2003) can be
used to construct coarse embeddings of Hilbert space into
Banach spaces for which such an embeddability appeared to
be somewhat unexpected.

I Later, M.O (2009) combined the technique of Nowak (2006)
with the results of Odell-Schlumprecht (1994) and
strengthened Nowak’s result as follows:

I Let X be a Banach space containing a subspace with an
unconditional basis which does not contain `n∞ uniformly.
Then `2 embeds coarsely into X .

I It was natural to check whether one can get the following
common generalization (of the mentioned results): Is it true
that `2 embeds coarsely into an arbitrary infinite-dimensional
Banach space?
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Failed Dvoretzky type theorem

I (Repeated from the previous slide) Is it true that `2 embeds
coarsely into an arbitrary infinite-dimensional Banach space?

I This problem was posed in M.O.(2006) and repeated in M.O.
(2009). A positive answer to this problem would be a very
impressive Dvoretzky type theorem.

I Yet, as the matter stands, it was answered in the negative by
Baudier-Lancien-Schlumprecht (2018) using a very elegant
argument. A typical counterexample is the space constructed
by Tsirelson (1974).
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Other directions of research related to Dvoretzky Theorem

I One of the most important directions related to the Dvoretzky
theorem is finding optimal estimates for the function N(k , ε)
in its statement. Many aspects of this problem have been
investigated staring with Milman (1971).

I Starting with the paper of Bourgain-Figiel-Milman (1986), a
parallel theory for metric spaces was developed. In this theory
the main goal is estimating from below the size - defined
either as cardinality or in some measure-theoretic ways - of
subsets of a metric space which admit low-distortion
embeddings into a Hilbert space. The theory became very
active after the fundamental paper Bartal-Linial-Mendel-Naor
(2005). One can find a short survey in Section 8 of Naor’s
paper on Ribe program (2012).
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Discussion of the proof of Theorem 1

I What can we find in any infinite-dimensional Banach space X?

I Dvoretzky theorem implies that in any X there are arbitrarily
large subspaces which are arbitrarily close to Euclidean spaces.

I Using Mazur’s techniques for constructing basic sequences
one can organize such almost-Euclidean spaces into a rather
decent finite-dimensional Schauder decomposition (FDD).

I “Rather decent” here means that we can require FDD
projections to have norms close to 1. (We can require even a
bit more.)
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I Now let us look at a locally finite subset M of `2. Assume,
for simplicity, that 0 ∈M.

I Each ball of finite radius in M spans a finite-dimensional
subspace of `2. If we consider any indefinitely increasing
sequence of radii, we get an increasing sequence of
finite-dimensional subspaces:

F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ Fn ⊂ . . . .

It will be convenient to denote the corresponding sequence of
radii by {ρ2i−1}∞i=1. (It is a subsequence of {ρk}∞k=1.)

I A natural idea is to find in X and FDD of the form

F1 ⊕ F2 ⊕ F3 ⊕ · · · ⊕ Fn ⊕ . . . .

I The space X does not have to contain such FDD
isometrically, but it contains such FDD up to a linear map of
an arbitrarily small distortion.
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What is next?

I Now we can split M into annuli
Ai := {x ∈M : ρi−1 ≤ d(x , 0) ≤ ρi} where ρ0 = 0 and
{ρi}∞i=0 is a so rapidly increasing sequence of positive numbers
that if the embedding will (almost) preserve the norm of
elements, to compute the distortion it can be enough to
consider pairs x , y which are either in the same annulus, or in
neighboring annuli.

I We can try to map A2i−1 into Fi by the natural isometric
embedding (Fi is spanned by a set containing A2i−1). After
that we can try to “bend” the complementary
(even-numbered) annuli A2i “between” Fi and Fi+1 in the
direct sum Fi ⊕ Fi+1.

I The problem is that we need “bending” with distortion
arbitrarily close to 1. It is not an easy task because in an
arbitrary Banach space X we do not have control (on
close-to-isometric level) over the direct sums Fi ⊕ Fi+1.
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Bendings - let us defined them

I Let X and Y be Banach spaces such that there exist two
linear isometric embeddings I1 : Y → X and I2 : Y → X with
distinct images Y1 = I1(Y ) and Y2 = I2(Y ).

I Definition: Let C ∈ [1,∞). A mapping T : Y → X is called
a C -bending of Y in the space X from I1 to I2, with
parameters (r ,R), 0 < r < R <∞, if it is a C -bilipschitz
embedding such that the restriction of T to the ball of radius
r coincides with I1 and the restriction of T to the exterior of
the ball of radius R in Y coincides with I2.

I When we consider a C -bending of Y in the space X = Y ⊕Y ,
we restrict our attention to the case where I1(y) = (y , 0) and
I2(y) = (0, y) and call such bending a C -bending of Y in the
space X = Y ⊕ Y with parameters (r ,R), 0 < r < R <∞.
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we restrict our attention to the case where I1(y) = (y , 0) and
I2(y) = (0, y) and call such bending a C -bending of Y in the
space X = Y ⊕ Y with parameters (r ,R), 0 < r < R <∞.
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First steps in study bendings

I It would be very handy to have a result on existence of
(1 + ε)-bending with some parameters (r ,R),
0 < r < R <∞, for every direct sum of the form Y ⊕ Y with
direct sum projections having norms one. With such a result
we could continue the argument on
F1 ⊕ F2 ⊕ F3 ⊕ · · · ⊕ Fn ⊕ . . . which we started above.

I However, such result does not hold.
I Theorem 2 (COO): There exists a 4-dimensional Banach

space X satisfying the conditions:

(A) It is a direct sum of two 2-dimensional Euclidean spaces Y1

and Y2 with direct sum projections having norm 1.
(B) There exists ε > 0 such that for any (r ,R) satisfying

0 < r < R <∞ and any isometric embeddings I1 : `22 → Y1

and I2 : `22 → Y2, there is no (1 + ε)-bending of `22 in X from
I1 to I2.
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I Conclusion: We need to do more work on the FDD
F1 ⊕ F2 ⊕ F3 ⊕ · · · ⊕ Fn ⊕ . . . to achieve (1 + ε) bending for
an arbitrarily small ε > 0.

I Theorem 3 (Bending in 1-unconditional sums, COO): Let
Y be a finite-dimensional Banach space, and let
Z = (R2, ‖ · ‖Z ) for which the unit vector basis is
1-unconditional and normalized. Then for every ε > 0 and
every pair (r ,R) of positive numbers satisfying the condition

ε

cZ
ln

(
R

r

)
=
π

2
, (1)

there is a

(
1 + ε

1− ε

)
-bending T of Y into the sum

X = Y ⊕Z Y with parameters (r ,R). Furthermore, the
bending T satisfies

‖Tx‖ = ‖x‖, (2)

and

(1− ε)‖x − y‖ ≤ ‖Tx − Ty‖ ≤ (1 + ε)‖x − y‖. (3)
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I The formula for bending is rather complicated. The main idea
of it is to use the logarithmic spiral, that is a spiral in the
plane which establishes a (1 + ε)-bilipschitz embedding of the
(0,∞) into the plane:

t 7→ t(cos(ε ln t), sin(ε ln t)).

I So, to complete the construction, we need to find an FDD
F1⊕ F2⊕ F3⊕ · · · ⊕ Fn ⊕ . . . , for which sums of neighbors are
unconditional or very close to unconditional.

I Note that such FDD does not have to be an unconditional
FDD (so it can exist for a subspace of an arbitrary
infinite-dimensional Banach space).
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Unconditional sub-sums

I Theorem 4 (Unconditionality for Sums of Euclidean
Spaces, COO): Given n ∈ N, ε ∈ (0, 1), and A ∈ [1,∞)
there exists N ∈ N, such that, for every direct sum
X = X1 ⊕ X2 with both X1 and X2 isometric to `N2 , and the
direct sum projections having norms ≤ A, there are
n-dimensional subspaces Y1 ⊂ X1 and Y2 ⊂ X2, such that the
sum Y1 ⊕ Y2 with the norm induced from X is
(1 + ε)-isomorphic (in a suitably defined sense) to a direct
sum Y1 ⊕Z Y2 with respect to a 1-unconditional basis.

I After that, we can (almost) follow the plan outlined at the
beginning, adding some necessary technical details.
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Looking for unconditional sub-sums

I To prove Theorem 4 we restate unconditionality in the
following terms

I Definition: Let Y1 ⊕ Y2 be a direct sum in which the
subspaces Y1 and Y2 are Euclidean, and let ε ∈ [0, 1). The
sum Y1 ⊕ Y2 is endowed with a norm whose restrictions to Y1

and Y2 are the Euclidean norms. We say Y1 ⊕ Y2 is
ε-invariant if for any orthogonal operator O1 on Y1 and any
orthogonal operator O2 on Y2, the inequality

(1− ε)‖y1 + y2‖ ≤ ‖O1y1 + O2y2‖ ≤ (1 + ε)‖y1 + y2‖ (4)

holds.

I Lemma 1: If the sum Y1 ⊕ Y2 is 0-invariant, it is a sum with
respect to a 1-unconditional basis in a 2-dimensional space.

I Lemma 2: If the sum Y1 ⊕ Y2 is ε-invariant, it is
(1 + ε)-isomorphic to 0-invariant.
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I Search for an ε-invariant sub-sum is a multi-step construction
which starts with the following.

I Proposition: Consider a Banach space X which has a
1-codimensional subspace Y0 which is isometric to `N2 , and its
complement is a linear span of x1. Let ε > 0, there exists a
subspace Y1 with controlled dimension such that the norm of
αx1 + y (y ∈ Y1) is ε-invariant to with respect to orthogonal
operators on Y1. This means

(1− ε)‖αx + y‖ ≤ ‖αx + Oy‖ ≤ (1 + ε)‖αx + y‖.

I The proof is based on the Larman-Mani (1975) theorem on
almost-spherical sections of non-symmetric convex bodies
with center in a given point, with better estimates and a
different proof by Gordon (1988).
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I Thank you!
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