Dvoretzky-type theorem for locally finite subsets of a Hilbert space

Mikhail Ostrovskii

St. John's University
Supported by the grant NSF DMS-1953773

XXII Lluís Santaló School, July 21, 2023

Let me start by stating the main result of the talk.

Let me start by stating the main result of the talk.

- A metric space is called locally finite if each ball of finite radius in it contains finitely many elements.
- Let me start by stating the main result of the talk.
- A metric space is called locally finite if each ball of finite radius in it contains finitely many elements.
- Example: The vertex set of an infinite graph with finitely many edges incident to each vertex and the distance between vertices u and v defined as the smallest number of edges one has to walk over to get to v from u.
- Let me start by stating the main result of the talk.
- A metric space is called locally finite if each ball of finite radius in it contains finitely many elements.
- Example: The vertex set of an infinite graph with finitely many edges incident to each vertex and the distance between vertices u and v defined as the smallest number of edges one has to walk over to get to v from u.
- A map $F: \mathcal{M} \rightarrow \mathcal{L}$ between two metric $\operatorname{spaces}\left(\mathcal{M}, d_{\mathcal{M}}\right)$ and $\left(\mathcal{L}, d_{\mathcal{L}}\right)$ is called a bilipschitz embedding if there exist constants $C_{1}, C_{2}>0$ so that for all $u, v \in \mathcal{M}$

$$
C_{1} d_{\mathcal{M}}(u, v) \leq d_{\mathcal{L}}(F(u), F(v)) \leq C_{2} d_{\mathcal{M}}(u, v)
$$

- Let me start by stating the main result of the talk.
- A metric space is called locally finite if each ball of finite radius in it contains finitely many elements.
- Example: The vertex set of an infinite graph with finitely many edges incident to each vertex and the distance between vertices u and v defined as the smallest number of edges one has to walk over to get to v from u.
- A map $F: \mathcal{M} \rightarrow \mathcal{L}$ between two metric spaces $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ and $\left(\mathcal{L}, d_{\mathcal{L}}\right)$ is called a bilipschitz embedding if there exist constants $C_{1}, C_{2}>0$ so that for all $u, v \in \mathcal{M}$

$$
C_{1} d_{\mathcal{M}}(u, v) \leq d_{\mathcal{L}}(F(u), F(v)) \leq C_{2} d_{\mathcal{M}}(u, v)
$$

- The distortion of F is defined as $\operatorname{Lip}(F) \cdot \operatorname{Lip}\left(\left.F^{-1}\right|_{F(\mathcal{M})}\right)$, where Lip (\cdot) denotes the Lipschitz constant.
- Let me start by stating the main result of the talk.
- A metric space is called locally finite if each ball of finite radius in it contains finitely many elements.
- Example: The vertex set of an infinite graph with finitely many edges incident to each vertex and the distance between vertices u and v defined as the smallest number of edges one has to walk over to get to v from u.
- A map $F: \mathcal{M} \rightarrow \mathcal{L}$ between two metric spaces $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ and $\left(\mathcal{L}, d_{\mathcal{L}}\right)$ is called a bilipschitz embedding if there exist constants $C_{1}, C_{2}>0$ so that for all $u, v \in \mathcal{M}$

$$
C_{1} d_{\mathcal{M}}(u, v) \leq d_{\mathcal{L}}(F(u), F(v)) \leq C_{2} d_{\mathcal{M}}(u, v)
$$

- The distortion of F is defined as $\operatorname{Lip}(F) \cdot \operatorname{Lip}\left(\left.F^{-1}\right|_{F(\mathcal{M})}\right)$, where Lip(•) denotes the Lipschitz constant.
- A bilipschitz embedding whose distortion does not exceed $C \in[1, \infty)$ is called C-bilipschitz.
- Let me start by stating the main result of the talk.
- A metric space is called locally finite if each ball of finite radius in it contains finitely many elements.
- Example: The vertex set of an infinite graph with finitely many edges incident to each vertex and the distance between vertices u and v defined as the smallest number of edges one has to walk over to get to v from u.
- A map $F: \mathcal{M} \rightarrow \mathcal{L}$ between two metric spaces $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ and $\left(\mathcal{L}, d_{\mathcal{L}}\right)$ is called a bilipschitz embedding if there exist constants $C_{1}, C_{2}>0$ so that for all $u, v \in \mathcal{M}$

$$
C_{1} d_{\mathcal{M}}(u, v) \leq d_{\mathcal{L}}(F(u), F(v)) \leq C_{2} d_{\mathcal{M}}(u, v)
$$

- The distortion of F is defined as $\operatorname{Lip}(F) \cdot \operatorname{Lip}\left(\left.F^{-1}\right|_{F(\mathcal{M})}\right)$, where $\operatorname{Lip}(\cdot)$ denotes the Lipschitz constant.
- A bilipschitz embedding whose distortion does not exceed $C \in[1, \infty)$ is called C-bilipschitz.
- Theorem 1 (joint work with Florin Catrina and Sofiya Ostrovska): Given any $\varepsilon>0$, every locally finite subset of ℓ_{2} admits a $(1+\varepsilon)$-bilipschitz embedding into an arbitrary infinite-dimensional Banach space.

Some general background

- Since this school is especially aimed at young researchers, I decided to dedicate more time to description of the area and less time to technical details of the proofs.

Some general background

- Since this school is especially aimed at young researchers, I decided to dedicate more time to description of the area and less time to technical details of the proofs.
- The stated result is at the intersection of two very important parts of Banach space theory.

Some general background

- Since this school is especially aimed at young researchers, I decided to dedicate more time to description of the area and less time to technical details of the proofs.
- The stated result is at the intersection of two very important parts of Banach space theory.
- (1) Asymptotic theory of finite-dimensional Banach spaces, also called Local Theory if the goal is to apply it to study infinite-dimensional Banach spaces.

Some general background

- Since this school is especially aimed at young researchers, I decided to dedicate more time to description of the area and less time to technical details of the proofs.
- The stated result is at the intersection of two very important parts of Banach space theory.
- (1) Asymptotic theory of finite-dimensional Banach spaces, also called Local Theory if the goal is to apply it to study infinite-dimensional Banach spaces.
- (2) The theory of Metric Embeddings, or, more precisely, its part devoted to embeddings of discrete metric spaces into Banach spaces.

Some general background

- Since this school is especially aimed at young researchers, I decided to dedicate more time to description of the area and less time to technical details of the proofs.
- The stated result is at the intersection of two very important parts of Banach space theory.
- (1) Asymptotic theory of finite-dimensional Banach spaces, also called Local Theory if the goal is to apply it to study infinite-dimensional Banach spaces.
- (2) The theory of Metric Embeddings, or, more precisely, its part devoted to embeddings of discrete metric spaces into Banach spaces.
- One of the general directions of the local theory is to understand, to what extent the structure of the general infinite-dimensional Banach space resembles the structure of the Hilbert space.
- The first significant success in this direction was the result of Dvoretzky and Rogers (1950). By showing that the structure of the unit ball of any high-dimensional Banach space has significant similarities with the ball of a Hilbert space they proved that for any sequence $\left\{a_{i}\right\}$ of positive numbers satisfying $\sum_{i=1}^{\infty} a_{i}^{2}<\infty$ any infinite-dimensional Banach space contains a series $\sum_{i=1}^{\infty} x_{i}$ which is unconditionally convergent (= converges after any rearrangement) and satisfies $\left\|x_{i}\right\|=a_{i}$.
- The first significant success in this direction was the result of Dvoretzky and Rogers (1950). By showing that the structure of the unit ball of any high-dimensional Banach space has significant similarities with the ball of a Hilbert space they proved that for any sequence $\left\{a_{i}\right\}$ of positive numbers satisfying $\sum_{i=1}^{\infty} a_{i}^{2}<\infty$ any infinite-dimensional Banach space contains a series $\sum_{i=1}^{\infty} x_{i}$ which is unconditionally convergent (= converges after any rearrangement) and satisfies $\left\|x_{i}\right\|=a_{i}$.
- Grothendieck (1953) analyzed this result of Dvoretzky and Rogers, and (among other things) conjectured the following result, somewhat later proved by Dvoretzky (announcement 1959, publication - 1961).
- Dvoretzky Theorem: Let $k \in \mathbb{N}, k \geq 2$, and $0<\varepsilon<1$. There exists $N=N(k, \varepsilon) \in \mathbb{N}$ so that every normed space having more than N dimensions - in particular every infinite-dimensional normed space - has a k-dimensional subspace whose Banach-Mazur distance from the k-dimensional Hilbert space is less than $(1+\varepsilon)$.
- Dvoretzky Theorem: Let $k \in \mathbb{N}, k \geq 2$, and $0<\varepsilon<1$. There exists $N=N(k, \varepsilon) \in \mathbb{N}$ so that every normed space having more than N dimensions - in particular every infinite-dimensional normed space - has a k-dimensional subspace whose Banach-Mazur distance from the k-dimensional Hilbert space is less than $(1+\varepsilon)$.
- If you never saw this result, the following restatement can help to understand the condition on the Banach-Mazur distance. It means that there exists a linear map T from a k-dimensional Euclidean space ℓ_{2}^{k} (standard notation) into X, for which

$$
\|x\| \leq\|T x\| \leq(1+\varepsilon)\|x\|
$$

- Dvoretzky Theorem: Let $k \in \mathbb{N}, k \geq 2$, and $0<\varepsilon<1$. There exists $N=N(k, \varepsilon) \in \mathbb{N}$ so that every normed space having more than N dimensions - in particular every infinite-dimensional normed space - has a k-dimensional subspace whose Banach-Mazur distance from the k-dimensional Hilbert space is less than $(1+\varepsilon)$.
- If you never saw this result, the following restatement can help to understand the condition on the Banach-Mazur distance. It means that there exists a linear map T from a k-dimensional Euclidean space ℓ_{2}^{k} (standard notation) into X, for which

$$
\|x\| \leq\|T x\| \leq(1+\varepsilon)\|x\|
$$

- In this connection, it is natural to call a result establishing significant presence of Hilbert space structures in an arbitrary infinite-dimensional Banach space a Dvoretzky-type theorem.
- Dvoretzky Theorem: Let $k \in \mathbb{N}, k \geq 2$, and $0<\varepsilon<1$. There exists $N=N(k, \varepsilon) \in \mathbb{N}$ so that every normed space having more than N dimensions - in particular every infinite-dimensional normed space - has a k-dimensional subspace whose Banach-Mazur distance from the k-dimensional Hilbert space is less than $(1+\varepsilon)$.
- If you never saw this result, the following restatement can help to understand the condition on the Banach-Mazur distance. It means that there exists a linear map T from a k-dimensional Euclidean space ℓ_{2}^{k} (standard notation) into X, for which

$$
\|x\| \leq\|T x\| \leq(1+\varepsilon)\|x\|
$$

- In this connection, it is natural to call a result establishing significant presence of Hilbert space structures in an arbitrary infinite-dimensional Banach space a Dvoretzky-type theorem.
- Slightly later I shall mention some Dvoretzky-type theorems and related open problems. Now I would like to remind some facts about Metric Embeddings.
- The first step in the study of Metric Embeddings were made almost simultaneously with the creation of the theory of metric spaces, namely Frèchet (1910) proved that each separable metric space embeds isometrically into ℓ_{∞} and each n-point metric space embeds isometrically into ℓ_{∞}^{n-1}.
- The first step in the study of Metric Embeddings were made almost simultaneously with the creation of the theory of metric spaces, namely Frèchet (1910) proved that each separable metric space embeds isometrically into ℓ_{∞} and each n-point metric space embeds isometrically into ℓ_{∞}^{n-1}.
- After that, the flow of metric embeddings papers never stopped. As some of the most influential papers of the early period, I mention papers of Schoenberg of the 1930's.
- The first step in the study of Metric Embeddings were made almost simultaneously with the creation of the theory of metric spaces, namely Frèchet (1910) proved that each separable metric space embeds isometrically into ℓ_{∞} and each n-point metric space embeds isometrically into ℓ_{∞}^{n-1}.
- After that, the flow of metric embeddings papers never stopped. As some of the most influential papers of the early period, I mention papers of Schoenberg of the 1930's.
- The development of the theory of Metric Embeddings started to accelerate in the first half of 80s, with the following results proved by Assouad (1983), Johnson-Lindenstrauss (1984), and Bourgain (1985).
- Assouad (1983): If a metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ satisfies the condition: there exists $K<\infty$ such that each ball in \mathcal{M} is covered by at most K balls of of twice smaller diameter, then for every $p \in(0,1)$ there exists $1 \leq C(p, K)<\infty$ and $N(p, K) \in \mathbb{N}$ such that $\left(\mathcal{M}, d_{\mathcal{M}}^{p}\right)$ admits a bilipschitz embedding into the Euclidean space $\mathbb{R}^{N(p, K)}$ with distortion at most $C(p, K)$.
- Assouad (1983): If a metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ satisfies the condition: there exists $K<\infty$ such that each ball in \mathcal{M} is covered by at most K balls of of twice smaller diameter, then for every $p \in(0,1)$ there exists $1 \leq C(p, K)<\infty$ and $N(p, K) \in \mathbb{N}$ such that $\left(\mathcal{M}, d_{\mathcal{M}}^{p}\right)$ admits a bilipschitz embedding into the Euclidean space $\mathbb{R}^{N(p, K)}$ with distortion at most $C(p, K)$.
- Johnson-Lindenstrauss (1984): For each $\varepsilon>0$ there exists $K(\varepsilon)<\infty$ such that for each n-element metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ in ℓ_{2}, there exists an embedding of $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ into the Euclidean space $\mathbb{R}^{K(\varepsilon) \log _{2} n}$ with distortion $\leq(1+\varepsilon)$.
- Assouad (1983): If a metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ satisfies the condition: there exists $K<\infty$ such that each ball in \mathcal{M} is covered by at most K balls of of twice smaller diameter, then for every $p \in(0,1)$ there exists $1 \leq C(p, K)<\infty$ and $N(p, K) \in \mathbb{N}$ such that $\left(\mathcal{M}, d_{\mathcal{M}}^{p}\right)$ admits a bilipschitz embedding into the Euclidean space $\mathbb{R}^{N(p, K)}$ with distortion at most $C(p, K)$.
- Johnson-Lindenstrauss (1984): For each $\varepsilon>0$ there exists $K(\varepsilon)<\infty$ such that for each n-element metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ in ℓ_{2}, there exists an embedding of $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ into the Euclidean space $\mathbb{R}^{K(\varepsilon) \log _{2} n}$ with distortion $\leq(1+\varepsilon)$.
- Bourgain (1985): For each n-element metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ there exists an embedding into ℓ_{2} with distortion $\leq C \log _{2} n$, where C is an absolute constant. (Later it was shown that up to the value of C this result is the best possible.)
- Assouad (1983): If a metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ satisfies the condition: there exists $K<\infty$ such that each ball in \mathcal{M} is covered by at most K balls of of twice smaller diameter, then for every $p \in(0,1)$ there exists $1 \leq C(p, K)<\infty$ and $N(p, K) \in \mathbb{N}$ such that $\left(\mathcal{M}, d_{\mathcal{M}}^{p}\right)$ admits a bilipschitz embedding into the Euclidean space $\mathbb{R}^{N(p, K)}$ with distortion at most $C(p, K)$.
- Johnson-Lindenstrauss (1984): For each $\varepsilon>0$ there exists $K(\varepsilon)<\infty$ such that for each n-element metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ in ℓ_{2}, there exists an embedding of $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ into the Euclidean space $\mathbb{R}^{K(\varepsilon) \log _{2} n}$ with distortion $\leq(1+\varepsilon)$.
- Bourgain (1985): For each n-element metric space $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ there exists an embedding into ℓ_{2} with distortion $\leq C \log _{2} n$, where C is an absolute constant. (Later it was shown that up to the value of C this result is the best possible.)
- In the 1990s, two important ideas on applications of embeddings of discrete metric spaces into Banach spaces emerged:
(1) Mikhail Gromov suggested using embeddings of finitely generated groups associated with topological spaces into "good" Banach spaces (Hilbert of uniformly convex) as a tool for solving some significant open problems of Topology.
- (1) Mikhail Gromov suggested using embeddings of finitely generated groups associated with topological spaces into "good" Banach spaces (Hilbert of uniformly convex) as a tool for solving some significant open problems of Topology.
- For Gromov's approach it is sufficient to find embeddings which are weaker than bilipschitz: A map $F: \mathcal{M} \rightarrow \mathcal{L}$ is called a coarse embedding if there exist nondecreasing, infinite at ∞ functions $\rho^{-}, \rho^{+}:[0, \infty) \rightarrow[0, \infty)$ so that for all $u, v \in \mathcal{M}$

$$
\rho^{-}\left(d_{\mathcal{M}}(u, v)\right) \leq d_{\mathcal{L}}(F(u), F(v)) \leq \rho^{+}\left(d_{\mathcal{M}}(u, v)\right)
$$

- (1) Mikhail Gromov suggested using embeddings of finitely generated groups associated with topological spaces into "good" Banach spaces (Hilbert of uniformly convex) as a tool for solving some significant open problems of Topology.
- For Gromov's approach it is sufficient to find embeddings which are weaker than bilipschitz: A map $F: \mathcal{M} \rightarrow \mathcal{L}$ is called a coarse embedding if there exist nondecreasing, infinite at ∞ functions $\rho^{-}, \rho^{+}:[0, \infty) \rightarrow[0, \infty)$ so that for all $u, v \in \mathcal{M}$

$$
\rho^{-}\left(d_{\mathcal{M}}(u, v)\right) \leq d_{\mathcal{L}}(F(u), F(v)) \leq \rho^{+}\left(d_{\mathcal{M}}(u, v)\right)
$$

- The metric spaces in Gromov's problems are infinite groups G generated by finite sets S, regarded as vertex sets of infinite graphs in which two vertices $u, v \in G$ are joined by an edge if and only if $u=v s$ for some $s \in S$ (the metric $d(u, v)=$ the minimal number of multiplication of v by elements of S after which we get u).
- (1) Mikhail Gromov suggested using embeddings of finitely generated groups associated with topological spaces into "good" Banach spaces (Hilbert of uniformly convex) as a tool for solving some significant open problems of Topology.
- For Gromov's approach it is sufficient to find embeddings which are weaker than bilipschitz: A map $F: \mathcal{M} \rightarrow \mathcal{L}$ is called a coarse embedding if there exist nondecreasing, infinite at ∞ functions $\rho^{-}, \rho^{+}:[0, \infty) \rightarrow[0, \infty)$ so that for all $u, v \in \mathcal{M}$

$$
\rho^{-}\left(d_{\mathcal{M}}(u, v)\right) \leq d_{\mathcal{L}}(F(u), F(v)) \leq \rho^{+}\left(d_{\mathcal{M}}(u, v)\right)
$$

- The metric spaces in Gromov's problems are infinite groups G generated by finite sets S, regarded as vertex sets of infinite graphs in which two vertices $u, v \in G$ are joined by an edge if and only if $u=v s$ for some $s \in S$ (the metric $d(u, v)=$ the minimal number of multiplication of v by elements of S after which we get u).
- There was a significant progress along the lines suggested by Gromov; an (early) summary of it can be found in the International Congress talk of Guoliang Yu (2006).
(2) Linial-London-Rabinovich suggested using bilipschitz embeddings of finite metric spaces into Banach spaces as a tool for developing (approximation) algorithms in Computer Science.
- (2) Linial-London-Rabinovich suggested using bilipschitz embeddings of finite metric spaces into Banach spaces as a tool for developing (approximation) algorithms in Computer Science.
- Let me describe the general idea of this. There are many computer science problems on finite metric spaces \mathcal{M}. Among these problems there are problems for which fast algorithms are known if \mathcal{M} is a subset of ℓ_{1} with the induced metric, but it is believed that there are no such algorithms in general (the corresponding problems are NP-complete, the standard term in the theory of Algorithms).
- (2) Linial-London-Rabinovich suggested using bilipschitz embeddings of finite metric spaces into Banach spaces as a tool for developing (approximation) algorithms in Computer Science.
- Let me describe the general idea of this. There are many computer science problems on finite metric spaces \mathcal{M}. Among these problems there are problems for which fast algorithms are known if \mathcal{M} is a subset of ℓ_{1} with the induced metric, but it is believed that there are no such algorithms in general (the corresponding problems are NP-complete, the standard term in the theory of Algorithms).
- In many such situations, if the metric space \mathcal{M} is not isometric to a subset of ℓ_{1}, but admits a low-distortion embedding into ℓ_{1}, we can use the mentioned fast algorithm for subsets of ℓ_{1}, and get a fast useful approximation of the solution for \mathcal{M}.
- (2) Linial-London-Rabinovich suggested using bilipschitz embeddings of finite metric spaces into Banach spaces as a tool for developing (approximation) algorithms in Computer Science.
- Let me describe the general idea of this. There are many computer science problems on finite metric spaces \mathcal{M}. Among these problems there are problems for which fast algorithms are known if \mathcal{M} is a subset of ℓ_{1} with the induced metric, but it is believed that there are no such algorithms in general (the corresponding problems are NP-complete, the standard term in the theory of Algorithms).
- In many such situations, if the metric space \mathcal{M} is not isometric to a subset of ℓ_{1}, but admits a low-distortion embedding into ℓ_{1}, we can use the mentioned fast algorithm for subsets of ℓ_{1}, and get a fast useful approximation of the solution for \mathcal{M}.
- See International Congress (ICM) talks by Linial (2002) and Naor $(2010,2018)$ for description of the progress in this direction. There are also books on Approximation Algorithms.
- Theorem 1 (Catrina, Ostrovska, \& M.O.): Given any $\varepsilon>0$, every locally finite subset of ℓ_{2} admits a $(1+\varepsilon)$-bilipschitz embedding into an arbitrary infinite-dimensional Banach space.
- Theorem 1 (Catrina, Ostrovska, \& M.O.): Given any $\varepsilon>0$, every locally finite subset of ℓ_{2} admits a $(1+\varepsilon)$-bilipschitz embedding into an arbitrary infinite-dimensional Banach space.
- Remark: Note that there exist (Ostrovska - M.O., 2019) locally finite subsets of ℓ_{2} which do not admit isometric embeddings into some infinite-dimensional Banach spaces, such as $\ell_{p},(1<p<\infty, p \neq 2)$.
- Theorem 1 (Catrina, Ostrovska, \& M.O.): Given any $\varepsilon>0$, every locally finite subset of ℓ_{2} admits a $(1+\varepsilon)$-bilipschitz embedding into an arbitrary infinite-dimensional Banach space.
- Remark: Note that there exist (Ostrovska - M.O., 2019) locally finite subsets of ℓ_{2} which do not admit isometric embeddings into some infinite-dimensional Banach spaces, such as $\ell_{p},(1<p<\infty, p \neq 2)$.
- At this point, it is appropriate to present a short overview of the available Dvoretzky-type results and related open problems.
- Theorem 1 (Catrina, Ostrovska, \& M.O.): Given any $\varepsilon>0$, every locally finite subset of ℓ_{2} admits a $(1+\varepsilon)$-bilipschitz embedding into an arbitrary infinite-dimensional Banach space.
- Remark: Note that there exist (Ostrovska - M.O., 2019) locally finite subsets of ℓ_{2} which do not admit isometric embeddings into some infinite-dimensional Banach spaces, such as $\ell_{p},(1<p<\infty, p \neq 2)$.
- At this point, it is appropriate to present a short overview of the available Dvoretzky-type results and related open problems.
- First, we recall the open problem on the validity of a finite isometric Dvoretzky theorem for all infinite-dimensional Banach spaces.
- Theorem 1 (Catrina, Ostrovska, \& M.O.): Given any $\varepsilon>0$, every locally finite subset of ℓ_{2} admits a $(1+\varepsilon)$-bilipschitz embedding into an arbitrary infinite-dimensional Banach space.
- Remark: Note that there exist (Ostrovska - M.O., 2019) locally finite subsets of ℓ_{2} which do not admit isometric embeddings into some infinite-dimensional Banach spaces, such as $\ell_{p},(1<p<\infty, p \neq 2)$.
- At this point, it is appropriate to present a short overview of the available Dvoretzky-type results and related open problems.
- First, we recall the open problem on the validity of a finite isometric Dvoretzky theorem for all infinite-dimensional Banach spaces.
- Problem (M.O., 2015): Do there exist a finite subset F of ℓ_{2} and an infinite-dimensional Banach space X such that F does not admit an isometric embedding into X ?
- Weakening of Theorem 1 (M.O. 2006): Each locally finite subset of ℓ_{2} admits a coarse embedding into an arbitrary infinite-dimensional Banach space.
- Weakening of Theorem 1 (M.O. 2006): Each locally finite subset of ℓ_{2} admits a coarse embedding into an arbitrary infinite-dimensional Banach space.
- Using the technique of Baudier-Lancien (2008), different from that employed in M.O. (2006), this result was strengthened to
- Weakening of Theorem 1 (M.O. 2006): Each locally finite subset of ℓ_{2} admits a coarse embedding into an arbitrary infinite-dimensional Banach space.
- Using the technique of Baudier-Lancien (2008), different from that employed in M.O. (2006), this result was strengthened to
- Coming closer to Theorem 1 (M.O. 2009): Each locally finite subset of ℓ_{2} admits a bilipschitz embedding into arbitrary infinite-dimensional Banach space.
- Weakening of Theorem 1 (M.O. 2006): Each locally finite subset of ℓ_{2} admits a coarse embedding into an arbitrary infinite-dimensional Banach space.
- Using the technique of Baudier-Lancien (2008), different from that employed in M.O. (2006), this result was strengthened to
- Coming closer to Theorem 1 (M.O. 2009): Each locally finite subset of ℓ_{2} admits a bilipschitz embedding into arbitrary infinite-dimensional Banach space.
- In 2009 I did not try to give an estimate for the distortion, it is some number below 100, but not far from it. Theorem 1 of this talk is the best possible result in this direction.

Failed Dvoretzky type theorem

- As another development, Nowak (2006) showed that the embedding techniques of Dadarlat-Guentner (2003) can be used to construct coarse embeddings of Hilbert space into Banach spaces for which such an embeddability appeared to be somewhat unexpected.

Failed Dvoretzky type theorem

- As another development, Nowak (2006) showed that the embedding techniques of Dadarlat-Guentner (2003) can be used to construct coarse embeddings of Hilbert space into Banach spaces for which such an embeddability appeared to be somewhat unexpected.
- Later, M.O (2009) combined the technique of Nowak (2006) with the results of Odell-Schlumprecht (1994) and strengthened Nowak's result as follows:

Failed Dvoretzky type theorem

- As another development, Nowak (2006) showed that the embedding techniques of Dadarlat-Guentner (2003) can be used to construct coarse embeddings of Hilbert space into Banach spaces for which such an embeddability appeared to be somewhat unexpected.
- Later, M.O (2009) combined the technique of Nowak (2006) with the results of Odell-Schlumprecht (1994) and strengthened Nowak's result as follows:
- Let X be a Banach space containing a subspace with an unconditional basis which does not contain ℓ_{∞}^{n} uniformly. Then ℓ_{2} embeds coarsely into X.

Failed Dvoretzky type theorem

- As another development, Nowak (2006) showed that the embedding techniques of Dadarlat-Guentner (2003) can be used to construct coarse embeddings of Hilbert space into Banach spaces for which such an embeddability appeared to be somewhat unexpected.
- Later, M.O (2009) combined the technique of Nowak (2006) with the results of Odell-Schlumprecht (1994) and strengthened Nowak's result as follows:
- Let X be a Banach space containing a subspace with an unconditional basis which does not contain ℓ_{∞}^{n} uniformly. Then ℓ_{2} embeds coarsely into X.
- It was natural to check whether one can get the following common generalization (of the mentioned results): Is it true that ℓ_{2} embeds coarsely into an arbitrary infinite-dimensional Banach space?

Failed Dvoretzky type theorem

- (Repeated from the previous slide) Is it true that ℓ_{2} embeds coarsely into an arbitrary infinite-dimensional Banach space?

Failed Dvoretzky type theorem

- (Repeated from the previous slide) Is it true that ℓ_{2} embeds coarsely into an arbitrary infinite-dimensional Banach space?
- This problem was posed in M.O.(2006) and repeated in M.O. (2009). A positive answer to this problem would be a very impressive Dvoretzky type theorem.

Failed Dvoretzky type theorem

- (Repeated from the previous slide) Is it true that ℓ_{2} embeds coarsely into an arbitrary infinite-dimensional Banach space?
- This problem was posed in M.O.(2006) and repeated in M.O. (2009). A positive answer to this problem would be a very impressive Dvoretzky type theorem.
- Yet, as the matter stands, it was answered in the negative by Baudier-Lancien-Schlumprecht (2018) using a very elegant argument. A typical counterexample is the space constructed by Tsirelson (1974).

Other directions of research related to Dvoretzky Theorem

- One of the most important directions related to the Dvoretzky theorem is finding optimal estimates for the function $N(k, \varepsilon)$ in its statement. Many aspects of this problem have been investigated staring with Milman (1971).

Other directions of research related to Dvoretzky Theorem

- One of the most important directions related to the Dvoretzky theorem is finding optimal estimates for the function $N(k, \varepsilon)$ in its statement. Many aspects of this problem have been investigated staring with Milman (1971).
- Starting with the paper of Bourgain-Figiel-Milman (1986), a parallel theory for metric spaces was developed. In this theory the main goal is estimating from below the size - defined either as cardinality or in some measure-theoretic ways - of subsets of a metric space which admit low-distortion embeddings into a Hilbert space. The theory became very active after the fundamental paper Bartal-Linial-Mendel-Naor (2005). One can find a short survey in Section 8 of Naor's paper on Ribe program (2012).

Discussion of the proof of Theorem 1

- What can we find in any infinite-dimensional Banach space X ?

Discussion of the proof of Theorem 1

- What can we find in any infinite-dimensional Banach space X ?
- Dvoretzky theorem implies that in any X there are arbitrarily large subspaces which are arbitrarily close to Euclidean spaces.

Discussion of the proof of Theorem 1

- What can we find in any infinite-dimensional Banach space X ?
- Dvoretzky theorem implies that in any X there are arbitrarily large subspaces which are arbitrarily close to Euclidean spaces.
- Using Mazur's techniques for constructing basic sequences one can organize such almost-Euclidean spaces into a rather decent finite-dimensional Schauder decomposition (FDD).

Discussion of the proof of Theorem 1

- What can we find in any infinite-dimensional Banach space X ?
- Dvoretzky theorem implies that in any X there are arbitrarily large subspaces which are arbitrarily close to Euclidean spaces.
- Using Mazur's techniques for constructing basic sequences one can organize such almost-Euclidean spaces into a rather decent finite-dimensional Schauder decomposition (FDD).
- "Rather decent" here means that we can require FDD projections to have norms close to 1 . (We can require even a bit more.)
- Now let us look at a locally finite subset \mathcal{M} of ℓ_{2}. Assume, for simplicity, that $0 \in \mathcal{M}$.
- Now let us look at a locally finite subset \mathcal{M} of ℓ_{2}. Assume, for simplicity, that $0 \in \mathcal{M}$.
- Each ball of finite radius in \mathcal{M} spans a finite-dimensional subspace of ℓ_{2}. If we consider any indefinitely increasing sequence of radii, we get an increasing sequence of finite-dimensional subspaces:

$$
F_{1} \subset F_{2} \subset F_{3} \subset \cdots \subset F_{n} \subset \ldots
$$

It will be convenient to denote the corresponding sequence of radii by $\left\{\rho_{2 i-1}\right\}_{i=1}^{\infty}$. (It is a subsequence of $\left\{\rho_{k}\right\}_{k=1}^{\infty}$.)

- Now let us look at a locally finite subset \mathcal{M} of ℓ_{2}. Assume, for simplicity, that $0 \in \mathcal{M}$.
- Each ball of finite radius in \mathcal{M} spans a finite-dimensional subspace of ℓ_{2}. If we consider any indefinitely increasing sequence of radii, we get an increasing sequence of finite-dimensional subspaces:

$$
F_{1} \subset F_{2} \subset F_{3} \subset \cdots \subset F_{n} \subset \ldots
$$

It will be convenient to denote the corresponding sequence of radii by $\left\{\rho_{2 i-1}\right\}_{i=1}^{\infty}$. (It is a subsequence of $\left\{\rho_{k}\right\}_{k=1}^{\infty}$.)

- A natural idea is to find in X and FDD of the form

$$
F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots
$$

- Now let us look at a locally finite subset \mathcal{M} of ℓ_{2}. Assume, for simplicity, that $0 \in \mathcal{M}$.
- Each ball of finite radius in \mathcal{M} spans a finite-dimensional subspace of ℓ_{2}. If we consider any indefinitely increasing sequence of radii, we get an increasing sequence of finite-dimensional subspaces:

$$
F_{1} \subset F_{2} \subset F_{3} \subset \cdots \subset F_{n} \subset \ldots
$$

It will be convenient to denote the corresponding sequence of radii by $\left\{\rho_{2 i-1}\right\}_{i=1}^{\infty}$. (It is a subsequence of $\left\{\rho_{k}\right\}_{k=1}^{\infty}$.)

- A natural idea is to find in X and FDD of the form

$$
F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots
$$

- The space X does not have to contain such FDD isometrically, but it contains such FDD up to a linear map of an arbitrarily small distortion.

What is next?

- Now we can split \mathcal{M} into annuli $\mathcal{A}_{i}:=\left\{x \in \mathcal{M}: \rho_{i-1} \leq d(x, 0) \leq \rho_{i}\right\}$ where $\rho_{0}=0$ and $\left\{\rho_{i}\right\}_{i=0}^{\infty}$ is a so rapidly increasing sequence of positive numbers that if the embedding will (almost) preserve the norm of elements, to compute the distortion it can be enough to consider pairs x, y which are either in the same annulus, or in neighboring annuli.

What is next?

- Now we can split \mathcal{M} into annuli $\mathcal{A}_{i}:=\left\{x \in \mathcal{M}: \rho_{i-1} \leq d(x, 0) \leq \rho_{i}\right\}$ where $\rho_{0}=0$ and $\left\{\rho_{i}\right\}_{i=0}^{\infty}$ is a so rapidly increasing sequence of positive numbers that if the embedding will (almost) preserve the norm of elements, to compute the distortion it can be enough to consider pairs x, y which are either in the same annulus, or in neighboring annuli.
- We can try to map $\mathcal{A}_{2 i-1}$ into F_{i} by the natural isometric embedding (F_{i} is spanned by a set containing $\mathcal{A}_{2 i-1}$). After that we can try to "bend" the complementary (even-numbered) annuli $\mathcal{A}_{2 i}$ "between" F_{i} and F_{i+1} in the direct sum $F_{i} \oplus F_{i+1}$.

What is next?

- Now we can split \mathcal{M} into annuli $\mathcal{A}_{i}:=\left\{x \in \mathcal{M}: \rho_{i-1} \leq d(x, 0) \leq \rho_{i}\right\}$ where $\rho_{0}=0$ and $\left\{\rho_{i}\right\}_{i=0}^{\infty}$ is a so rapidly increasing sequence of positive numbers that if the embedding will (almost) preserve the norm of elements, to compute the distortion it can be enough to consider pairs x, y which are either in the same annulus, or in neighboring annuli.
- We can try to map $\mathcal{A}_{2 i-1}$ into F_{i} by the natural isometric embedding (F_{i} is spanned by a set containing $\mathcal{A}_{2 i-1}$). After that we can try to "bend" the complementary (even-numbered) annuli $\mathcal{A}_{2 i}$ "between" F_{i} and F_{i+1} in the direct sum $F_{i} \oplus F_{i+1}$.
- The problem is that we need "bending" with distortion arbitrarily close to 1 . It is not an easy task because in an arbitrary Banach space X we do not have control (on close-to-isometric level) over the direct sums $F_{i} \oplus F_{i+1}$.

Bendings - let us defined them

- Let X and Y be Banach spaces such that there exist two linear isometric embeddings $I_{1}: Y \rightarrow X$ and $I_{2}: Y \rightarrow X$ with distinct images $Y_{1}=I_{1}(Y)$ and $Y_{2}=I_{2}(Y)$.

Bendings - let us defined them

- Let X and Y be Banach spaces such that there exist two linear isometric embeddings $I_{1}: Y \rightarrow X$ and $I_{2}: Y \rightarrow X$ with distinct images $Y_{1}=I_{1}(Y)$ and $Y_{2}=I_{2}(Y)$.
- Definition: Let $C \in[1, \infty)$. A mapping $T: Y \rightarrow X$ is called a C-bending of Y in the space X from I_{1} to I_{2}, with parameters $(r, R), 0<r<R<\infty$, if it is a C-bilipschitz embedding such that the restriction of T to the ball of radius r coincides with I_{1} and the restriction of T to the exterior of the ball of radius R in Y coincides with I_{2}.

Bendings - let us defined them

- Let X and Y be Banach spaces such that there exist two linear isometric embeddings $I_{1}: Y \rightarrow X$ and $I_{2}: Y \rightarrow X$ with distinct images $Y_{1}=I_{1}(Y)$ and $Y_{2}=I_{2}(Y)$.
- Definition: Let $C \in[1, \infty)$. A mapping $T: Y \rightarrow X$ is called a C-bending of Y in the space X from I_{1} to I_{2}, with parameters $(r, R), 0<r<R<\infty$, if it is a C-bilipschitz embedding such that the restriction of T to the ball of radius r coincides with I_{1} and the restriction of T to the exterior of the ball of radius R in Y coincides with I_{2}.
- When we consider a C-bending of Y in the space $X=Y \oplus Y$, we restrict our attention to the case where $I_{1}(y)=(y, 0)$ and $I_{2}(y)=(0, y)$ and call such bending a C-bending of Y in the space $X=Y \oplus Y$ with parameters $(r, R), 0<r<R<\infty$.

First steps in study bendings

- It would be very handy to have a result on existence of
$(1+\varepsilon)$-bending with some parameters (r, R), $0<r<R<\infty$, for every direct sum of the form $Y \oplus Y$ with direct sum projections having norms one. With such a result we could continue the argument on
$F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$ which we started above.

First steps in study bendings

- It would be very handy to have a result on existence of
$(1+\varepsilon)$-bending with some parameters (r, R),
$0<r<R<\infty$, for every direct sum of the form $Y \oplus Y$ with direct sum projections having norms one. With such a result we could continue the argument on
$F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$ which we started above.
- However, such result does not hold.

First steps in study bendings

- It would be very handy to have a result on existence of $(1+\varepsilon)$-bending with some parameters (r, R), $0<r<R<\infty$, for every direct sum of the form $Y \oplus Y$ with direct sum projections having norms one. With such a result we could continue the argument on $F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$ which we started above.
- However, such result does not hold.
- Theorem 2 (COO): There exists a 4-dimensional Banach space X satisfying the conditions:

First steps in study bendings

- It would be very handy to have a result on existence of
$(1+\varepsilon)$-bending with some parameters (r, R),
$0<r<R<\infty$, for every direct sum of the form $Y \oplus Y$ with direct sum projections having norms one. With such a result we could continue the argument on
$F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$ which we started above.
- However, such result does not hold.
- Theorem 2 (COO): There exists a 4-dimensional Banach space X satisfying the conditions:
(A) It is a direct sum of two 2-dimensional Euclidean spaces Y_{1} and Y_{2} with direct sum projections having norm 1.

First steps in study bendings

- It would be very handy to have a result on existence of $(1+\varepsilon)$-bending with some parameters (r, R), $0<r<R<\infty$, for every direct sum of the form $Y \oplus Y$ with direct sum projections having norms one. With such a result we could continue the argument on
$F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$ which we started above.
- However, such result does not hold.
- Theorem 2 (COO): There exists a 4-dimensional Banach space X satisfying the conditions:
(A) It is a direct sum of two 2-dimensional Euclidean spaces Y_{1} and Y_{2} with direct sum projections having norm 1.
(B) There exists $\varepsilon>0$ such that for any (r, R) satisfying $0<r<R<\infty$ and any isometric embeddings $I_{1}: \ell_{2}^{2} \rightarrow Y_{1}$ and $I_{2}: \ell_{2}^{2} \rightarrow Y_{2}$, there is no $(1+\varepsilon)$-bending of ℓ_{2}^{2} in X from I_{1} to I_{2}.
- Conclusion: We need to do more work on the FDD
$F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$ to achieve $(1+\varepsilon)$ bending for an arbitrarily small $\varepsilon>0$.
- Conclusion: We need to do more work on the FDD
$F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$ to achieve $(1+\varepsilon)$ bending for an arbitrarily small $\varepsilon>0$.
- Theorem 3 (Bending in 1-unconditional sums, COO): Let Y be a finite-dimensional Banach space, and let $Z=\left(\mathbb{R}^{2},\|\cdot\|_{z}\right)$ for which the unit vector basis is 1-unconditional and normalized. Then for every $\varepsilon>0$ and every pair (r, R) of positive numbers satisfying the condition

$$
\begin{equation*}
\frac{\varepsilon}{c_{Z}} \ln \left(\frac{R}{r}\right)=\frac{\pi}{2} \tag{1}
\end{equation*}
$$

there is a $\left(\frac{1+\varepsilon}{1-\varepsilon}\right)$-bending T of Y into the sum $X=Y \oplus_{Z} Y$ with parameters (r, R). Furthermore, the bending T satisfies

$$
\begin{equation*}
\|T x\|=\|x\| \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\varepsilon)\|x-y\| \leq\|T x-T y\| \leq(1+\varepsilon)\|x-y\| \tag{3}
\end{equation*}
$$

- The formula for bending is rather complicated. The main idea of it is to use the logarithmic spiral, that is a spiral in the plane which establishes a $(1+\varepsilon)$-bilipschitz embedding of the $(0, \infty)$ into the plane:

$$
t \mapsto t(\cos (\varepsilon \ln t), \quad \sin (\varepsilon \ln t))
$$

- The formula for bending is rather complicated. The main idea of it is to use the logarithmic spiral, that is a spiral in the plane which establishes a $(1+\varepsilon)$-bilipschitz embedding of the $(0, \infty)$ into the plane:

$$
t \mapsto t(\cos (\varepsilon \ln t), \quad \sin (\varepsilon \ln t))
$$

- So, to complete the construction, we need to find an FDD $F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$, for which sums of neighbors are unconditional or very close to unconditional.
- The formula for bending is rather complicated. The main idea of it is to use the logarithmic spiral, that is a spiral in the plane which establishes a $(1+\varepsilon)$-bilipschitz embedding of the $(0, \infty)$ into the plane:

$$
t \mapsto t(\cos (\varepsilon \ln t), \quad \sin (\varepsilon \ln t))
$$

- So, to complete the construction, we need to find an FDD $F_{1} \oplus F_{2} \oplus F_{3} \oplus \cdots \oplus F_{n} \oplus \ldots$, for which sums of neighbors are unconditional or very close to unconditional.
- Note that such FDD does not have to be an unconditional FDD (so it can exist for a subspace of an arbitrary infinite-dimensional Banach space).

Unconditional sub-sums

- Theorem 4 (Unconditionality for Sums of Euclidean Spaces, COO): Given $n \in \mathbb{N}, \varepsilon \in(0,1)$, and $A \in[1, \infty)$ there exists $N \in \mathbb{N}$, such that, for every direct sum $X=X_{1} \oplus X_{2}$ with both X_{1} and X_{2} isometric to ℓ_{2}^{N}, and the direct sum projections having norms $\leq A$, there are n-dimensional subspaces $Y_{1} \subset X_{1}$ and $Y_{2} \subset X_{2}$, such that the sum $Y_{1} \oplus Y_{2}$ with the norm induced from X is ($1+\varepsilon$)-isomorphic (in a suitably defined sense) to a direct sum $Y_{1} \oplus z Y_{2}$ with respect to a 1 -unconditional basis.

Unconditional sub-sums

- Theorem 4 (Unconditionality for Sums of Euclidean Spaces, COO): Given $n \in \mathbb{N}, \varepsilon \in(0,1)$, and $A \in[1, \infty)$ there exists $N \in \mathbb{N}$, such that, for every direct sum $X=X_{1} \oplus X_{2}$ with both X_{1} and X_{2} isometric to ℓ_{2}^{N}, and the direct sum projections having norms $\leq A$, there are n-dimensional subspaces $Y_{1} \subset X_{1}$ and $Y_{2} \subset X_{2}$, such that the sum $Y_{1} \oplus Y_{2}$ with the norm induced from X is ($1+\varepsilon$)-isomorphic (in a suitably defined sense) to a direct sum $Y_{1} \oplus_{z} Y_{2}$ with respect to a 1-unconditional basis.
- After that, we can (almost) follow the plan outlined at the beginning, adding some necessary technical details.

Looking for unconditional sub-sums

- To prove Theorem 4 we restate unconditionality in the following terms

Looking for unconditional sub-sums

- To prove Theorem 4 we restate unconditionality in the following terms
- Definition: Let $Y_{1} \oplus Y_{2}$ be a direct sum in which the subspaces Y_{1} and Y_{2} are Euclidean, and let $\varepsilon \in[0,1)$. The sum $Y_{1} \oplus Y_{2}$ is endowed with a norm whose restrictions to Y_{1} and Y_{2} are the Euclidean norms. We say $Y_{1} \oplus Y_{2}$ is ε-invariant if for any orthogonal operator O_{1} on Y_{1} and any orthogonal operator O_{2} on Y_{2}, the inequality

$$
\begin{equation*}
(1-\varepsilon)\left\|y_{1}+y_{2}\right\| \leq\left\|O_{1} y_{1}+O_{2} y_{2}\right\| \leq(1+\varepsilon)\left\|y_{1}+y_{2}\right\| \tag{4}
\end{equation*}
$$

holds.

Looking for unconditional sub-sums

- To prove Theorem 4 we restate unconditionality in the following terms
- Definition: Let $Y_{1} \oplus Y_{2}$ be a direct sum in which the subspaces Y_{1} and Y_{2} are Euclidean, and let $\varepsilon \in[0,1)$. The sum $Y_{1} \oplus Y_{2}$ is endowed with a norm whose restrictions to Y_{1} and Y_{2} are the Euclidean norms. We say $Y_{1} \oplus Y_{2}$ is ε-invariant if for any orthogonal operator O_{1} on Y_{1} and any orthogonal operator O_{2} on Y_{2}, the inequality

$$
\begin{equation*}
(1-\varepsilon)\left\|y_{1}+y_{2}\right\| \leq\left\|O_{1} y_{1}+O_{2} y_{2}\right\| \leq(1+\varepsilon)\left\|y_{1}+y_{2}\right\| \tag{4}
\end{equation*}
$$

holds.

- Lemma 1: If the sum $Y_{1} \oplus Y_{2}$ is 0 -invariant, it is a sum with respect to a 1-unconditional basis in a 2-dimensional space.

Looking for unconditional sub-sums

- To prove Theorem 4 we restate unconditionality in the following terms
- Definition: Let $Y_{1} \oplus Y_{2}$ be a direct sum in which the subspaces Y_{1} and Y_{2} are Euclidean, and let $\varepsilon \in[0,1)$. The sum $Y_{1} \oplus Y_{2}$ is endowed with a norm whose restrictions to Y_{1} and Y_{2} are the Euclidean norms. We say $Y_{1} \oplus Y_{2}$ is ε-invariant if for any orthogonal operator O_{1} on Y_{1} and any orthogonal operator O_{2} on Y_{2}, the inequality

$$
\begin{equation*}
(1-\varepsilon)\left\|y_{1}+y_{2}\right\| \leq\left\|O_{1} y_{1}+O_{2} y_{2}\right\| \leq(1+\varepsilon)\left\|y_{1}+y_{2}\right\| \tag{4}
\end{equation*}
$$

holds.

- Lemma 1: If the sum $Y_{1} \oplus Y_{2}$ is 0 -invariant, it is a sum with respect to a 1-unconditional basis in a 2-dimensional space.
- Lemma 2: If the sum $Y_{1} \oplus Y_{2}$ is ε-invariant, it is $(1+\varepsilon)$-isomorphic to 0 -invariant.
- Search for an ε-invariant sub-sum is a multi-step construction which starts with the following.
- Search for an ε-invariant sub-sum is a multi-step construction which starts with the following.
- Proposition: Consider a Banach space X which has a 1-codimensional subspace Y_{0} which is isometric to ℓ_{2}^{N}, and its complement is a linear span of x_{1}. Let $\varepsilon>0$, there exists a subspace Y_{1} with controlled dimension such that the norm of $\alpha x_{1}+y\left(y \in Y_{1}\right)$ is ε-invariant to with respect to orthogonal operators on Y_{1}. This means

$$
(1-\varepsilon)\|\alpha x+y\| \leq\|\alpha x+O y\| \leq(1+\varepsilon)\|\alpha x+y\| .
$$

- Search for an ε-invariant sub-sum is a multi-step construction which starts with the following.
- Proposition: Consider a Banach space X which has a 1-codimensional subspace Y_{0} which is isometric to ℓ_{2}^{N}, and its complement is a linear span of x_{1}. Let $\varepsilon>0$, there exists a subspace Y_{1} with controlled dimension such that the norm of $\alpha x_{1}+y\left(y \in Y_{1}\right)$ is ε-invariant to with respect to orthogonal operators on Y_{1}. This means

$$
(1-\varepsilon)\|\alpha x+y\| \leq\|\alpha x+O y\| \leq(1+\varepsilon)\|\alpha x+y\| .
$$

- The proof is based on the Larman-Mani (1975) theorem on almost-spherical sections of non-symmetric convex bodies with center in a given point, with better estimates and a different proof by Gordon (1988).
- Thank you!

