On the complemented subspace problem based on joint work with D. de Hevia, A. Salguero-Alarcón and P. Tradacete

XXII Lluís Santaló School 2023 Linear and non-linear analysis in Banach Spaces

Gonzalo Martínez Cervantes

University of Alicante, Spain

July 21th, 2023

This work was partially supported by grants 21955/PI/22, funded by Fundación Séneca - ACyT Región de Murcia, and PID2021-122126NB-C32, funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".

・ロト ・個ト ・ヨト ・ヨト

CSP for C(K)-**spaces**. Are complemented subspaces in C(K)-spaces isomorphic to C(K)-spaces?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

One of the most important problems in the theory of Banach lattices, which is still open, is whether any complemented subspace of a Banach lattice must be linearly isomorphic to a Banach lattice.

P. Casazza, N. Kalton and L. Tzafriri (1987)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

CSP for C(K)-**spaces**. Are complemented subspaces in C(K)-spaces isomorphic to C(K)-spaces?

CSP for Banach lattices. Are complemented subspaces in Banach lattices isomorphic to Banach lattices?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (G. Plebanek, A. Salguero-Alarcón, 2023)

There exist compact spaces K and L such that $C(L) = C(K) \oplus X$ but X is not isomorphic to a space of continuous functions.

Theorem (G. Plebanek, A. Salguero-Alarcón, 2023)

There exist compact spaces K and L such that $C(L) = C(K) \oplus X$ but X is not isomorphic to a space of continuous functions.

Theorem (D. de Hevia, G.M.C., A. Salguero-Alarcón, P. Tradacete)

In fact, the space X is not isomorphic to a Banach lattice.

Definition. A *Banach lattice* is a Banach space $(X, \|\cdot\|)$ equipped with a lattice order \leq which satisfies

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$\textbf{0} \ \text{ If } x \leq y, \text{ then } x + z \leq y + z \text{ and } ax \leq ay \text{ for any } a \in \mathbb{R}^+;$$

2 If
$$|x| \le |y|$$
, then $||x|| \le ||y||$.

Theorem (G. Plebanek, A. Salguero-Alarcón, 2023)

There exist compact spaces K and L such that $C(L) = C(K) \oplus X$ but X is not isomorphic to a space of continuous functions.

Theorem (D. de Hevia, G.M.C., A. Salguero-Alarcón, P. Tradacete)

In fact, the space X is not isomorphic to a Banach lattice.

A family \mathcal{F} of infinite subsets of \mathbb{N} is *almost disjoint* whenever $A \cap B$ is finite for every distinct $A, B \in \mathcal{F}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A family \mathcal{F} of infinite subsets of \mathbb{N} is *almost disjoint* whenever $A \cap B$ is finite for every distinct $A, B \in \mathcal{F}$.

If \mathcal{F} is an almost disjoint family, the compact space induced by \mathcal{F} is the compact space $K_{\mathcal{F}} = \mathbb{N} \cup \{p_A : A \in \mathcal{F}\} \cup \{\infty\}$ where:

- points in ℕ are isolated;
- given $A \in \mathcal{F}$, a basic neighbourhood of p_A is of the form $\{p_A\} \cup (A \setminus F)$, where F is finite;
- *K_F* is the one-point compactification of the locally compact space ℕ ∪ {*p_A* : *A* ∈ *F*}.

Theorem (G. Plebanek, A. Salguero-Alarcón, 2023)

There exist compact spaces K and L such that $C(L) = C(K) \oplus X$ but X is not isomorphic to a space of continuous functions.

Theorem (D. de Hevia, G.M.C., A. Salguero-Alarcón, P. Tradacete)

In fact, the space X is not isomorphic to a Banach lattice.

Since L is scattered, we have $C(L)^* = \ell_1(L)$

• Since L is scattered, we have $C(L)^* = \ell_1(L) = C(K)^* \oplus X^*$.

Since L is scattered, we have C(L)* = ℓ₁(L)= C(K)* ⊕ X*. Therefore, X* = ℓ₁(Γ) for some set Γ.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Since L is scattered, we have $C(L)^* = \ell_1(L) = C(K)^* \oplus X^*$. Therefore, $X^* = \ell_1(\Gamma)$ for some set Γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

2 ℓ_1 (and $\ell_1(\Gamma)$) admits a unique Banach lattice structure.

Since L is scattered, we have C(L)* = ℓ₁(L)= C(K)* ⊕ X*. Therefore, X* = ℓ₁(Γ) for some set Γ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

- **2** ℓ_1 (and $\ell_1(\Gamma)$) admits a unique Banach lattice structure.
- Suppose X is a Banach lattice.

Since L is scattered, we have C(L)* = ℓ₁(L)= C(K)* ⊕ X*. Therefore, X* = ℓ₁(Γ) for some set Γ.

- **2** ℓ_1 (and $\ell_1(\Gamma)$) admits a unique Banach lattice structure.
- Suppose X is a Banach lattice. If $x^* \in X^*$ is an atom, then $x^*(|x|) = |x^*(x)|$ for every $x \in X$.

Since L is scattered, we have C(L)* = ℓ₁(L)= C(K)* ⊕ X*. Therefore, X* = ℓ₁(Γ) for some set Γ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

- **2** ℓ_1 (and $\ell_1(\Gamma)$) admits a unique Banach lattice structure.
- Suppose X is a Banach lattice. If $x^* \in X^*$ is an atom, then $x^*(|x|) = |x^*(x)|$ for every $x \in X$.
- Since L is separable, C(L) has a countable norming set.

- Since L is scattered, we have C(L)* = ℓ₁(L)= C(K)* ⊕ X*. Therefore, X* = ℓ₁(Γ) for some set Γ.
- **2** ℓ_1 (and $\ell_1(\Gamma)$) admits a unique Banach lattice structure.
- Suppose X is a Banach lattice. If $x^* \in X^*$ is an atom, then $x^*(|x|) = |x^*(x)|$ for every $x \in X$.
- Since L is separable, C(L) has a countable norming set. Therefore, X has a countable norming set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

- Since L is scattered, we have C(L)* = ℓ₁(L)= C(K)* ⊕ X*. Therefore, X* = ℓ₁(Γ) for some set Γ.
- **2** ℓ_1 (and $\ell_1(\Gamma)$) admits a unique Banach lattice structure.
- Suppose X is a Banach lattice. If $x^* \in X^*$ is an atom, then $x^*(|x|) = |x^*(x)|$ for every $x \in X$.
- Since L is separable, C(L) has a countable norming set. Therefore, X has a countable norming set.
- If X is a Banach lattice, then there exists a norming sequence (e^{*}_n)_{n∈ℕ} in X^{*} consisting of atoms of X^{*}.

- Since L is scattered, we have C(L)* = ℓ₁(L)= C(K)* ⊕ X*. Therefore, X* = ℓ₁(Γ) for some set Γ.
- **2** ℓ_1 (and $\ell_1(\Gamma)$) admits a unique Banach lattice structure.
- Suppose X is a Banach lattice. If $x^* \in X^*$ is an atom, then $x^*(|x|) = |x^*(x)|$ for every $x \in X$.
- Since L is separable, C(L) has a countable norming set. Therefore, X has a countable norming set.
- If X is a Banach lattice, then there exists a norming sequence (e^{*}_n)_{n∈ℕ} in X^{*} consisting of atoms of X^{*}.

Desired Property (DP)

For every norming sequence $(e_n^*)_{n \in \mathbb{N}}$ in X^* there exists an element $x \in X$ such that no element $y \in X$ satisfies

$$e_n^*(y) = |e_n^*(x)|$$
 for every $n \in \mathbb{N}$.

Open Problem

Is every complemented subspace of C([0,1]) isomorphic to a C(K)-space or to a Banach lattice?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣べ⊙

Open Problem

Is every complemented subspace of C([0, 1]) isomorphic to a C(K)-space or to a Banach lattice?

Thank you for your attention.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで