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Notation

X real or complex Banach space, X∗ dual space
SX unit sphere, BX closed unit ball
conv(·) convex hull, conv(·) closed convex hull

A slice of A (bounded convex ⊂ X) is a (nonempty) subset of the form

S (A, x∗, α) := {x ∈ A : Re x∗(x) > sup Re x∗(A)− α} (x∗ ∈ X∗, α > 0)

A convex combination of slices of A is the set
n∑

i=1

λiS(A, x∗
i , αi),

where λ1, . . . , λn ≥ 0 and
∑n

i=1 λi = 1.



SCD sets and spaces

Let A ⊂ X be bounded and convex.

Definition (A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska
(2010))
A sequence {Vn : n ∈ N} of subsets of A is determining for A, if one of the
following equivalent conditions hold:

if B ⊂ A satisfies B ∩ Vn 6= ∅ for every n, then A ⊂ conv(B);
if xn ∈ Vn for every n, then A ⊂ conv({xn : n ∈ N});
if for every slice S of A, there is a Vm such that Vm ⊂ S.

Definition (AKMMS (2010))
The set A is said to be slicely countably determined (an SCD set in short),
if there exists a determining sequence of slices of A.
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Properties and positive examples of SCD sets

Proposition (AKMMS (2010))
A is SCD iff A is SCD
If A is an SCD set, then A is separable

Example (AKMMS (2010))
If A is separable and A = conv(dent(A)), then A is SCD. In particular, if
X has RNP, then every closed and bounded subset is SCD.

Corollary (AKMMS (2010))
If X is separable and LUR, then BX is SCD. Hence, every separable space
can be renormed such that B(X ,|·|) is SCD.

Example (AKMMS (2010))
If X∗ is separable, then every A is SCD.
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Negative examples

Example (AKMMS (2010))
If X has the Daugavet property, then BX is not SCD.

Example (AKMMS (2010))
A subset of an SCD set need not to be an SCD set.

Proof.
Consider X := C [0, 1]. Since X is separable, it admits an equivalent LUR
renorming. Hence B(X ,|·|) is SCD, but there is a α ∈ R such that

αB(X ,‖·‖) ⊂ B(X ,|·|)

and B(X ,‖·‖) is not SCD.
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SCD spaces

Definition (AKMMS (2010))
Separable space X is an SCD space if all of its convex bounded subsets are
SCD.

Example (AKMMS (2010))
If X separable and has RNP, then X is an SCD space
If X is separable and X + `1, then X is an SCD space

Example (V. Kadets, M. Martin, J. Meri, D. Werner (2013))
If X has a 1-unconditional basis, then BX is SCD.

Problem
If X has a 1-unconditional basis, then X is an SCD space?
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Determining sequence

Let A ⊂ X be bounded and convex.

Definition
We say that a countable sequence {Vn : n ∈ N} of subsets of A is
determining for point a ∈ A if a ∈ conv(B) for every B ⊂ A intersecting
all the sets Vn.

Proposition
For a sequence {Vn : n ∈ N} of subsets of A, the following conditions are
equivalent:
(i) {Vn : n ∈ N} is determining for a;
(ii) for every slice S of A with a ∈ S, there is m ∈ N such that Vm ⊂ S;
(iii) if xn ∈ Vn for every n ∈ N, then a ∈ conv({xn : n ∈ N}).
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SCD points

Definition
A point a ∈ A is called a slicely countably determined point of A (an SCD
point of A in short), if there exists a determining sequence of slices of A
for the point a.

We denote the set of all SCD points of A by SCD(A).

Lemma
The following statements hold:

1 If A is an SCD set, then every a ∈ A is an SCD point.
2 If every a ∈ A is an SCD point and A is separable, then A is an SCD

set.
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First examples of SCD points

Proposition
The following conditions are equivalent:
(i) a ∈ SCD(A);
(ii) there exists a sequence of relatively weakly open sets

{Wn : n ∈ N} ⊂ A, which is determining for a;
(iii) there exists a sequence of convex combinations of slices

{Cn : n ∈ N} ⊂ A, which is determining for a.

A point a of a closed bounded and convex set A is called a strongly regular
point of A if for every ε > 0 there exists a convex combination C of slices
of A such that a ∈ C and diam(C) < ε (H. Rosenthal (1988)).

Lemma
If a ∈ A is a strongly regular point (in particular, denting point), then a is
an SCD point.
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SCD points vs Daugavet points
Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

x ∈ SX is a Daugavet point if for every slice S of BX and for every
ε > 0 there is a y ∈ S with ‖x − y‖ ≥ 2− ε.
X has the Daugavet property if every x ∈ SX is a Daugavet point.

Example
The constant function 1 is both a Daugavet point and an SCD point in Bc .

Example (T. Veeorg (2023))
There exists a Banach space (actually a Lipschitz-free space) with the
RNP and a Daugavet point.

x0 ∈ SCD(A) if ∃{Sn} ⊂ A such that ∀x0 ∈ S ⊂ A there is Sm ⊂ S

Example
Assume that X has the RNP and let x0 ∈ SX be a Daugavet point. Then
for every ε > 0 there exists a sequence of slices {Sn : n ∈ N} ⊂ BX
determining for x0 such that d(x0,Sn) > 2− ε for every n ∈ N.
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Properties of SCD(A)

Lemma
Let A ⊂ X be bounded and convex. Then

SCD(A) is convex and norm closed.
if A is balanced, then so is SCD(A).

Corollary
SCD(BX ) 6= ∅ if and only if 0 ∈ SCD(BX ).
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When is SCD(BX) = ∅?

A Banach space X is said to have property (e) if for all sequences of
slices {Sn : n ∈ N} of BX , there are γ ∈ (0, 1], xn ∈ Sn, and x∗ ∈ SX∗ such
that Re x∗(xn) ≥ γ for every n ∈ N.

Remark
If γ = 1, then (e) = 1-ASD2Pω (S. Ciaci, J. L., A. Lissitsin (2022))

Example
C [0, 1], L1[0, 1], L∞[0, 1], `∞, and c0(Γ), where Γ is uncountable, all
have (e).
X ⊕p Y has (e) whenever X and Y have (e).

Theorem
If a Banach space X has property (e), then SCD(BX ) = ∅.
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When is SCD(BX) = ∅?

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))
A Banach space X is said to fail (−1)-BCP if for any separable subspace
Y ⊂ X there exists x ∈ SX such that equality

‖y + λx‖ = ‖y‖+ |λ| (2.1)

holds for every y ∈ Y and λ ∈ R.

Example (GLM (2019) + S. Ciaci, J. L., A. Lissitsin (2023))
Examples of Banach spaces failing the (−1)-BCP include `1(I), where I is
an uncountable set, the space `∞/c0, and X∗ whenever X has the
Daugavet property.

The following chain of implications holds:

X is Daugavet ⇒ X∗ fails (-1)-BCP ⇒ X has (e) ⇒ SCD(BX ) = ∅



When is SCD(BX) = ∅?

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))
A Banach space X is said to fail (−1)-BCP if for any separable subspace
Y ⊂ X there exists x ∈ SX such that equality

‖y + λx‖ = ‖y‖+ |λ| (2.1)

holds for every y ∈ Y and λ ∈ R.

Example (GLM (2019) + S. Ciaci, J. L., A. Lissitsin (2023))
Examples of Banach spaces failing the (−1)-BCP include `1(I), where I is
an uncountable set, the space `∞/c0, and X∗ whenever X has the
Daugavet property.

The following chain of implications holds:

X is Daugavet ⇒ X∗ fails (-1)-BCP ⇒ X has (e) ⇒ SCD(BX ) = ∅



When is SCD(BX) = ∅?

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))
A Banach space X is said to fail (−1)-BCP if for any separable subspace
Y ⊂ X there exists x ∈ SX such that equality

‖y + λx‖ = ‖y‖+ |λ| (2.1)

holds for every y ∈ Y and λ ∈ R.

Example (GLM (2019) + S. Ciaci, J. L., A. Lissitsin (2023))
Examples of Banach spaces failing the (−1)-BCP include `1(I), where I is
an uncountable set, the space `∞/c0, and X∗ whenever X has the
Daugavet property.

The following chain of implications holds:

X is Daugavet ⇒ X∗ fails (-1)-BCP ⇒ X has (e) ⇒ SCD(BX ) = ∅



Table of Contents

1 Introduction and background

2 SCD points

3 SCD points in L1-preduals

4 SCD points in direct sums

5 SCD points in projective tensor product

6 SCD points in Lipschitz-free spaces

7 Some more applications

8 References



SCD points in L1-preduals

Recall that given a measured space (S,Σ, µ) a Banach space X is said to
be an L1-predual, if X∗ = L1(S,Σ, µ). It is known that

L1(S,Σ, µ) = L1(S,Σ, ν)⊕1 `1(I), (3.1)

where ν is a non-atomic measure and I is some index set.

For f , g ∈ ext (BX∗), we say f ∼ g if and only if f = λg for some λ ∈ C
with |λ| = 1. We denote the quotient set by ext (BX∗)/ ∼.

Theorem
Let X be an L1-predual. Then the following statements hold:
(a) If ext (BX∗)/ ∼ is at most countable, then X is an SCD space. In

particular, SCD(BX ) = BX ;
(b) If ext (BX∗)/ ∼ is uncountable, then SCD(BX ) = ∅.
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SCD points in L1-preduals

Proof.
(a). If ext (BX∗)/ ∼ is at most countable, then it is known that X∗ is
separable. Thus X∗ has the RNP, and hence X is an SCD space (Ex. 3.2,
AKMMS), in particular, SCD(BX ) = BX .

(b). Assume that ext (BX∗)/ ∼ is uncountable and consider the
decomposition (3.1). It is known that ext (BL1(S,Σ,ν)) = ∅ whenever ν is a
non-atomic measure. Thus

ext (BX∗) ⊂ {0} × ext (B`1(I)). (3.2)

Moreover, ext (B`1(I)) = {λei : i ∈ I, |λ| = 1}, where ei(j) = δij . Now since
the set ext (BX∗)/ ∼ is uncountable, we deduce that I is uncountable (by
(3.2)). It is known that `1(I) then fails (−1)-BCP and then by (CLL
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SCD points in `p-sums

Let X and Y be Banach spaces

Theorem
Then (a, b) ∈ SCD(BX⊕∞Y ) if and only if a ∈ SCD(BX ) and
b ∈ SCD(BY ).

Proposition
Let 1 ≤ p < ∞.
(a) If a ∈ SCD(BX ), then (a, 0) ∈ SCD(BX⊕pY ).
(b) If a ∈ SX and (a, 0) ∈ SCD(BX⊕pY ), then a ∈ SCD(BX ).

Theorem
Let (a, b) ∈ SX⊕1Y , where a ∈ X \ {0} and b ∈ Y \ {0}. Then
(a, b) ∈ SCD(BX⊕1Y ) if and only if a

‖a‖ ∈ SCD(BX ) and b
‖b‖ ∈ SCD(BY ).
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A Banach space where SCD(BX) = {0}
Let (Xn) be Banach spaces. Consider X :=

(⊕∞
n=1 Xn

)
p endowed with

the norm

‖x‖ =
( ∞∑

n=1

‖xn‖p
)1/p

, where x = (xn)
∞
n=1 and 1 < p < ∞.

Theorem
If (Xn) is arbitrary, then 0 ∈ SCD(BX ).

Proposition
Assume that X := E ⊕p Y , where E has the Daugavet property, Y is
arbitrary, and 1 < p < ∞. If (a, b) ∈ SCD(BX ), then a = 0.

Theorem
Consider the Banach space X :=

(⊕∞
n=1 En

)
p , where 1 < p < ∞ and En

are spaces with the Daugavet property. Then SCD(BX ) = {0}.
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SCD points in projective tensor product

Problem
If X and Y are SCD spaces, then so is X⊗̂πY ?

Theorem
Let X and Y be real Banach spaces. If a ∈ dent(BX ) and
b ∈ SCD(BY ) \ {0}, then a ⊗ b ∈ SCD(BX⊗̂πY ).

Corollary
Let X and Y be real Banach spaces such that BX is dentable and
SCD(BY ) = BY . Then SCD(BX⊗̂πY ) = BX⊗̂πY . If BX is also separable
and BY is an SCD set, then BX⊗̂πY is an SCD set.
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SCD points in F(M)

A point x0 ∈ BX is a strongly exposed point if there is a x∗ ∈ X∗ such
that diam(S(BX , x∗, α)) → 0 whenever α → 0.

Theorem
Let M be a compact metric space and let µ ∈ SF(M). TFAE:
(i) µ is an SCD point.
(ii) µ ∈ conv(str .exp(BF(M)).
In particular, BF(M) is SCD if and only if BF(M) = conv(str .exp(BF(M))).
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SCD points in F(M)

Recall that M is a proper if every closed bounded set is compact. Given
two points x , y ∈ M, we write

[x , y ] := {z ∈ M : d(x , z) + d(y , z) = d(x , y)}.

Moreover, M is rotund if, given R > 0, the condition x , y ∈ B(0,R)
implies [x , y ] ⊆ B(0,R).

Example
If M is a (closed) subset of a strictly convex Banach space X , then M is
rotund.

Theorem
Let M be a proper and rotund metric space and let µ ∈ SF(M). TFAE:
(i) µ is an SCD point.
(ii) µ ∈ conv(dent(BF(M)).
In particular, BF(M) is SCD if, and only if, BF(M) = conv(dent(BF(M))).
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Applications

Let X be a Banach space and let Y be a subspace of X .

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))
If X has the Daugavet property and Y is an M-ideal in X or (X/Y )∗ is
separable, then Y has the Daugavet property.

Theorem
If X has the Daugavet property and 0 ∈ X/Y satisfies that 0 is an SCD
point in any convex subset C ⊂ BX/Y containing it, then Y has the
Daugavet property.

And one more...

Theorem
If X is separable and X∗ fails (-1)-BCP, then X contains `1.



Applications

Let X be a Banach space and let Y be a subspace of X .

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))
If X has the Daugavet property and Y is an M-ideal in X or (X/Y )∗ is
separable, then Y has the Daugavet property.

Theorem
If X has the Daugavet property and 0 ∈ X/Y satisfies that 0 is an SCD
point in any convex subset C ⊂ BX/Y containing it, then Y has the
Daugavet property.

And one more...

Theorem
If X is separable and X∗ fails (-1)-BCP, then X contains `1.



Applications

Let X be a Banach space and let Y be a subspace of X .

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))
If X has the Daugavet property and Y is an M-ideal in X or (X/Y )∗ is
separable, then Y has the Daugavet property.

Theorem
If X has the Daugavet property and 0 ∈ X/Y satisfies that 0 is an SCD
point in any convex subset C ⊂ BX/Y containing it, then Y has the
Daugavet property.

And one more...

Theorem
If X is separable and X∗ fails (-1)-BCP, then X contains `1.



Table of Contents

1 Introduction and background

2 SCD points

3 SCD points in L1-preduals

4 SCD points in direct sums

5 SCD points in projective tensor product

6 SCD points in Lipschitz-free spaces

7 Some more applications

8 References



References (1/2)

T. A. Abrahamsen, R. Haller, V. Lima, and K. Pirk, Delta-
and Daugavet points in Banach spaces, Proc. Edinb. Math. Soc.
(2020).

A. Avilés, V. Kadets, M. Martín, J. Merí, and
V. Shepelska, Slicely countably determined Banach spaces, Trans.
Am. Math. Soc. (2010).

S. Ciaci, J. Langemets, and A. Lissitsin, Attaining strong
diameter two property for infinite cardinals, J. Math. Anal. Appl.
(2022).

S. Ciaci, J. Langemets, and A. Lissitsin, A characterization of
Banach spaces containing `1(κ) via ball-covering properties, Isr. J.
Math. (2023).

A. J. Guirao, A. Lissitsin, and V. Montesinos, Some remarks
on the ball-covering property, J. Math. Anal. Appl. (2019).



References (2/2)

V. Kadets, M. Martin, J. Meri, and D. Werner, Lushness,
Numerical Index 1 and the Daugavet Property in Rearrangement
Invariant Spaces, Can. J. Math. (2013)

V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and
D. Werner, Banach spaces with the Daugavet property, Trans. Am.
Math. Soc. (2000).

H. P. Rosenthal, On the structure of nondentable closed bounded
convex sets, Adv. in Math. (1988).

T. Veeorg, Characterizations of Daugavet points and delta-points in
Lipschitz-free spaces, Stud. Math. (2023).


	Introduction and background
	SCD points
	SCD points in L1-preduals
	SCD points in direct sums
	SCD points in projective tensor product
	SCD points in Lipschitz-free spaces
	Some more applications
	References

