Slicely countably determined points in Banach spaces

July 18th, 2023 XXII Luís Santaló School Linear and non-linear analysis in Banach spaces Santander, Spain 🚬

UNIVERSITY OF TARTU Institute of Mathematics and Statistics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Colaboradores

Ongoing joint work with:

M. Lõo 💳, M. Martín 컱, and A. Rueda Zoca 컱

Outline of the talk

- 1 Introduction and background
- 2 SCD points
- **③** SCD points in L_1 -preduals
- SCD points in direct sums
- 5 SCD points in projective tensor product
- 6 SCD points in Lipschitz-free spaces
- Some more applications

8 References

This work was supported by the Estonian Research Council grant (PSG487).

Table of Contents

1 Introduction and background

2 SCD points

- \bigcirc SCD points in L_1 -preduals
- 4 SCD points in direct sums
- 5 SCD points in projective tensor product

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 6 SCD points in Lipschitz-free spaces
- Some more applications

8 References

Notation

- X real or complex Banach space, X* dual space
- S_X unit sphere, B_X closed unit ball
- $\operatorname{conv}(\cdot)$ convex hull, $\operatorname{\overline{conv}}(\cdot)$ closed convex hull

A slice of A (bounded convex $\subset X$) is a (nonempty) subset of the form

$$S(A, x^*, \alpha) := \{ x \in A : \operatorname{Re} x^*(x) > \sup \operatorname{Re} x^*(A) - \alpha \} \quad (x^* \in X^*, \alpha > 0)$$

A convex combination of slices of A is the set

$$\sum_{i=1}^n \lambda_i S(A, x_i^*, \alpha_i),$$

where $\lambda_1, \ldots, \lambda_n \geq 0$ and $\sum_{i=1}^n \lambda_i = 1$.

SCD sets and spaces

Let $A \subset X$ be bounded and convex.

Definition (A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska (2010))

A sequence $\{V_n: n \in \mathbb{N}\}$ of subsets of A is determining for A, if one of the following equivalent conditions hold:

- if $B \subset A$ satisfies $B \cap V_n \neq \emptyset$ for every *n*, then $A \subset \overline{\operatorname{conv}}(B)$;
- if $x_n \in V_n$ for every *n*, then $A \subset \overline{\operatorname{conv}}(\{x_n \colon n \in \mathbb{N}\});$
- if for every slice S of A, there is a V_m such that $V_m \subset S$.

SCD sets and spaces

Let $A \subset X$ be bounded and convex.

Definition (A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska (2010))

A sequence $\{V_n: n \in \mathbb{N}\}$ of subsets of A is determining for A, if one of the following equivalent conditions hold:

- if $B \subset A$ satisfies $B \cap V_n \neq \emptyset$ for every *n*, then $A \subset \overline{\operatorname{conv}}(B)$;
- if $x_n \in V_n$ for every *n*, then $A \subset \overline{\operatorname{conv}}(\{x_n \colon n \in \mathbb{N}\});$
- if for every slice S of A, there is a V_m such that $V_m \subset S$.

Definition (AKMMS (2010))

The set A is said to be slicely countably determined (an SCD set in short), if there exists a determining sequence of slices of A.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition (AKMMS (2010))

- A is SCD iff \overline{A} is SCD
- If A is an SCD set, then A is separable

Proposition (AKMMS (2010))

- A is SCD iff \overline{A} is SCD
- If A is an SCD set, then A is separable

Example (AKMMS (2010))

If A is separable and $A = \overline{\text{conv}}(\text{dent}(A))$, then A is SCD. In particular, if X has RNP, then every closed and bounded subset is SCD.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Proposition (AKMMS (2010))

- A is SCD iff \overline{A} is SCD
- If A is an SCD set, then A is separable

Example (AKMMS (2010))

If A is separable and $A = \overline{\text{conv}}(\text{dent}(A))$, then A is SCD. In particular, if X has RNP, then every closed and bounded subset is SCD.

Corollary (AKMMS (2010))

If X is separable and LUR, then B_X is SCD. Hence, every separable space can be renormed such that $B_{(X,|\cdot|)}$ is SCD.

Proposition (AKMMS (2010))

- A is SCD iff \overline{A} is SCD
- If A is an SCD set, then A is separable

Example (AKMMS (2010))

If A is separable and $A = \overline{\text{conv}}(\text{dent}(A))$, then A is SCD. In particular, if X has RNP, then every closed and bounded subset is SCD.

Corollary (AKMMS (2010))

If X is separable and LUR, then B_X is SCD. Hence, every separable space can be renormed such that $B_{(X,|\cdot|)}$ is SCD.

Example (AKMMS (2010))

If X^* is separable, then every A is SCD.

Negative examples

Example (AKMMS (2010))

If X has the Daugavet property, then B_X is not SCD.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example (AKMMS (2010))

If X has the Daugavet property, then B_X is not SCD.

Example (AKMMS (2010))

A subset of an SCD set need not to be an SCD set.

Example (AKMMS (2010))

If X has the Daugavet property, then B_X is not SCD.

Example (AKMMS (2010))

A subset of an SCD set need not to be an SCD set.

Proof.

Consider X := C[0, 1]. Since X is separable, it admits an equivalent LUR renorming. Hence $B_{(X, |\cdot|)}$ is SCD, but there is a $\alpha \in \mathbb{R}$ such that

$$\alpha B_{(X,\|\cdot\|)} \subset B_{(X,|\cdot|)}$$

and $B_{(X,\|\cdot\|)}$ is not SCD.

SCD spaces

Definition (AKMMS (2010))

Separable space X is an SCD space if all of its convex bounded subsets are SCD.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

SCD spaces

Definition (AKMMS (2010))

Separable space X is an SCD space if all of its convex bounded subsets are SCD.

Example (AKMMS (2010))

- If X separable and has RNP, then X is an SCD space
- If X is separable and $X \not\supseteq \ell_1$, then X is an SCD space

SCD spaces

Definition (AKMMS (2010))

Separable space X is an SCD space if all of its convex bounded subsets are SCD.

Example (AKMMS (2010))

- If X separable and has RNP, then X is an SCD space
- If X is separable and $X \not\supseteq \ell_1$, then X is an SCD space

Example (V. Kadets, M. Martin, J. Meri, D. Werner (2013))

If X has a 1-unconditional basis, then B_X is SCD.

Problem

If X has a 1-unconditional basis, then X is an SCD space?

Table of Contents

1 Introduction and background

2 SCD points

- **3** SCD points in L_1 -preduals
- 4 SCD points in direct sums
- 5 SCD points in projective tensor product

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 6 SCD points in Lipschitz-free spaces
- Some more applications

8 References

Determining sequence

Let $A \subset X$ be bounded and convex.

Definition

We say that a countable sequence $\{V_n : n \in \mathbb{N}\}$ of subsets of A is determining for point $a \in A$ if $a \in \overline{\operatorname{conv}}(B)$ for every $B \subset A$ intersecting all the sets V_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Determining sequence

Let $A \subset X$ be bounded and convex.

Definition

We say that a countable sequence $\{V_n : n \in \mathbb{N}\}$ of subsets of A is determining for point $a \in A$ if $a \in \overline{\operatorname{conv}}(B)$ for every $B \subset A$ intersecting all the sets V_n .

Proposition

For a sequence $\{V_n : n \in \mathbb{N}\}$ of subsets of A, the following conditions are equivalent:

(i) $\{V_n : n \in \mathbb{N}\}$ is determining for a;

(ii) for every slice S of A with $a \in S$, there is $m \in \mathbb{N}$ such that $V_m \subset S$;

(iii) if $x_n \in V_n$ for every $n \in \mathbb{N}$, then $a \in \overline{\operatorname{conv}}(\{x_n : n \in \mathbb{N}\})$.

Definition

A point $a \in A$ is called a slicely countably determined point of A (an SCD point of A in short), if there exists a determining sequence of slices of A for the point a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We denote the set of all SCD points of A by SCD(A).

Definition

A point $a \in A$ is called a slicely countably determined point of A (an SCD point of A in short), if there exists a determining sequence of slices of A for the point a.

We denote the set of all SCD points of A by SCD(A).

Lemma

The following statements hold:

- If A is an SCD set, then every $a \in A$ is an SCD point.
- If every a ∈ A is an SCD point and A is separable, then A is an SCD set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First examples of SCD points

Proposition

The following conditions are equivalent:

- (i) $a \in SCD(A)$;
- (ii) there exists a sequence of relatively weakly open sets $\{W_n: n \in \mathbb{N}\} \subset A$, which is determining for a;
- (iii) there exists a sequence of convex combinations of slices $\{C_n : n \in \mathbb{N}\} \subset A$, which is determining for a.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

First examples of SCD points

Proposition

The following conditions are equivalent:

- (i) $a \in SCD(A)$;
- (ii) there exists a sequence of relatively weakly open sets $\{W_n: n \in \mathbb{N}\} \subset A$, which is determining for a;
- (iii) there exists a sequence of convex combinations of slices $\{C_n : n \in \mathbb{N}\} \subset A$, which is determining for a.

A point *a* of a closed bounded and convex set *A* is called a strongly regular point of A if for every $\varepsilon > 0$ there exists a convex combination *C* of slices of *A* such that $a \in \overline{C}$ and diam $(C) < \varepsilon$ (**H. Rosenthal** (1988)).

First examples of SCD points

Proposition

The following conditions are equivalent:

- (i) $a \in SCD(A)$;
- (ii) there exists a sequence of relatively weakly open sets $\{W_n: n \in \mathbb{N}\} \subset A$, which is determining for a;
- (iii) there exists a sequence of convex combinations of slices $\{C_n : n \in \mathbb{N}\} \subset A$, which is determining for a.

A point *a* of a closed bounded and convex set *A* is called a strongly regular point of A if for every $\varepsilon > 0$ there exists a convex combination *C* of slices of *A* such that $a \in \overline{C}$ and diam $(C) < \varepsilon$ (**H. Rosenthal** (1988)).

Lemma

If $a \in A$ is a strongly regular point (in particular, denting point), then a is an SCD point.

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_X$ is a Daugavet point if for every slice S of B_X and for every $\varepsilon > 0$ there is a $y \in S$ with $||x y|| \ge 2 \varepsilon$.
- X has the Daugavet property if every $x \in S_X$ is a Daugavet point.

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_X$ is a Daugavet point if for every slice S of B_X and for every
 - $\varepsilon > 0$ there is a $y \in S$ with $||x y|| \ge 2 \varepsilon$.
- X has the Daugavet property if every $x \in S_X$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_c .

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_X$ is a Daugavet point if for every slice S of B_X and for every
 - $\varepsilon > 0$ there is a $y \in S$ with $||x y|| \ge 2 \varepsilon$.
- X has the Daugavet property if every $x \in S_X$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_c .

Example (T. Veeorg (2023))

There exists a Banach space (actually a Lipschitz-free space) with the RNP and a Daugavet point.

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_X$ is a Daugavet point if for every slice S of B_X and for every
 - $\varepsilon > 0$ there is a $y \in S$ with $||x y|| \ge 2 \varepsilon$.
- X has the Daugavet property if every $x \in S_X$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_c .

Example (T. Veeorg (2023))

There exists a Banach space (actually a Lipschitz-free space) with the RNP and a Daugavet point.

 $x_0 \in \text{SCD}(A)$ if $\exists \{S_n\} \subset A$ such that $\forall x_0 \in S \subset A$ there is $S_m \subset S$

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_X$ is a Daugavet point if for every slice S of B_X and for every
 - $\varepsilon > 0$ there is a $y \in S$ with $||x y|| \ge 2 \varepsilon$.
- X has the Daugavet property if every $x \in S_X$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_c .

Example (T. Veeorg (2023))

There exists a Banach space (actually a Lipschitz-free space) with the RNP and a Daugavet point.

 $x_0 \in \mathrm{SCD}(A)$ if $\exists \{S_n\} \subset A$ such that $\forall x_0 \in S \subset A$ there is $S_m \subset S$

Example

Assume that X has the RNP and let $x_0 \in S_X$ be a Daugavet point. Then for every $\varepsilon > 0$ there exists a sequence of slices $\{S_n : n \in \mathbb{N}\} \subset B_X$ determining for x_0 such that $d(x_0, S_n) > 2 - \varepsilon$ for every $n \in \mathbb{N}$.

Lemma

Let $A \subset X$ be bounded and convex. Then

- SCD(A) is convex and norm closed.
- if A is balanced, then so is SCD(A).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

Let $A \subset X$ be bounded and convex. Then

- SCD(A) is convex and norm closed.
- if A is balanced, then so is SCD(A).

Corollary

 $\operatorname{SCD}(B_X) \neq \emptyset$ if and only if $0 \in \operatorname{SCD}(B_X)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Banach space X is said to have property (\approx) if for all sequences of slices $\{S_n : n \in \mathbb{N}\}$ of B_X , there are $\gamma \in (0,1]$, $x_n \in S_n$, and $x^* \in S_{X^*}$ such that $\operatorname{Re} x^*(x_n) \geq \gamma$ for every $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A Banach space X is said to have property (\approx) if for all sequences of slices $\{S_n : n \in \mathbb{N}\}$ of B_X , there are $\gamma \in (0, 1]$, $x_n \in S_n$, and $x^* \in S_{X^*}$ such that $\operatorname{Re} x^*(x_n) \geq \gamma$ for every $n \in \mathbb{N}$.

Remark

If $\gamma = 1$, then $(\approx) = 1$ -ASD2P $_{\omega}$ (S. Ciaci, J. L., A. Lissitsin (2022))

A Banach space X is said to have property (\approx) if for all sequences of slices $\{S_n : n \in \mathbb{N}\}$ of B_X , there are $\gamma \in (0,1]$, $x_n \in S_n$, and $x^* \in S_{X^*}$ such that $\operatorname{Re} x^*(x_n) \geq \gamma$ for every $n \in \mathbb{N}$.

Remark

If $\gamma = 1$, then $(\approx) = 1$ -ASD2P $_{\omega}$ (S. Ciaci, J. L., A. Lissitsin (2022))

Example

• C[0,1], $L_1[0,1]$, $L_{\infty}[0,1]$, ℓ_{∞} , and $c_0(\Gamma)$, where Γ is uncountable, all have (\approx).

• $X \oplus_p Y$ has (\approx) whenever X and Y have (\approx).

A Banach space X is said to have property (\approx) if for all sequences of slices $\{S_n : n \in \mathbb{N}\}$ of B_X , there are $\gamma \in (0,1]$, $x_n \in S_n$, and $x^* \in S_{X^*}$ such that $\operatorname{Re} x^*(x_n) \geq \gamma$ for every $n \in \mathbb{N}$.

Remark

If $\gamma = 1$, then $(\approx) = 1$ -ASD2P $_{\omega}$ (S. Ciaci, J. L., A. Lissitsin (2022))

Example

- C[0,1], $L_1[0,1]$, $L_{\infty}[0,1]$, ℓ_{∞} , and $c_0(\Gamma)$, where Γ is uncountable, all have (\approx).
- $X \oplus_p Y$ has (\approx) whenever X and Y have (\approx).

Theorem

If a Banach space X has property (\approx), then $SCD(B_X) = \emptyset$.

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))

A Banach space X is said to fail (-1)-BCP if for any separable subspace $Y \subset X$ there exists $x \in S_X$ such that equality

$$||y + \lambda x|| = ||y|| + |\lambda|$$
 (2.1)

holds for every $y \in Y$ and $\lambda \in \mathbb{R}$.

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))

A Banach space X is said to fail (-1)-BCP if for any separable subspace $Y \subset X$ there exists $x \in S_X$ such that equality

$$||y + \lambda x|| = ||y|| + |\lambda|$$
 (2.1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

holds for every $y \in Y$ and $\lambda \in \mathbb{R}$.

Example (GLM (2019) + S. Ciaci, J. L., A. Lissitsin (2023))

Examples of Banach spaces failing the (-1)-BCP include $\ell_1(I)$, where I is an uncountable set, the space ℓ_{∞}/c_0 , and X^* whenever X has the Daugavet property.

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))

A Banach space X is said to fail (-1)-BCP if for any separable subspace $Y \subset X$ there exists $x \in S_X$ such that equality

$$||y + \lambda x|| = ||y|| + |\lambda|$$
 (2.1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

holds for every $y \in Y$ and $\lambda \in \mathbb{R}$.

Example (GLM (2019) + S. Ciaci, J. L., A. Lissitsin (2023))

Examples of Banach spaces failing the (-1)-BCP include $\ell_1(I)$, where I is an uncountable set, the space ℓ_{∞}/c_0 , and X^* whenever X has the Daugavet property.

The following chain of implications holds:

X is Daugavet \Rightarrow X^{*} fails (-1)-BCP \Rightarrow X has (\approx) \Rightarrow SCD(B_X) = \emptyset

Table of Contents

1 Introduction and background

2 SCD points

- \bigcirc SCD points in L_1 -preduals
- 4 SCD points in direct sums
- 5 SCD points in projective tensor product

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 6 SCD points in Lipschitz-free spaces
- Some more applications

8 References

Recall that given a measured space (S, Σ, μ) a Banach space X is said to be an L_1 -predual, if $X^* = L_1(S, \Sigma, \mu)$. It is known that

$$L_1(S, \Sigma, \mu) = L_1(S, \Sigma, \nu) \oplus_1 \ell_1(I),$$
(3.1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where ν is a non-atomic measure and I is some index set.

Recall that given a measured space (S, Σ, μ) a Banach space X is said to be an L_1 -predual, if $X^* = L_1(S, \Sigma, \mu)$. It is known that

$$L_1(S, \Sigma, \mu) = L_1(S, \Sigma, \nu) \oplus_1 \ell_1(I),$$
(3.1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

where ν is a non-atomic measure and I is some index set.

For $f, g \in \text{ext}(B_{X^*})$, we say $f \sim g$ if and only if $f = \lambda g$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. We denote the quotient set by $\text{ext}(B_{X^*}) / \sim$.

Recall that given a measured space (S, Σ, μ) a Banach space X is said to be an L_1 -predual, if $X^* = L_1(S, \Sigma, \mu)$. It is known that

$$L_1(S, \Sigma, \mu) = L_1(S, \Sigma, \nu) \oplus_1 \ell_1(I),$$
(3.1)

where ν is a non-atomic measure and I is some index set. For $f, g \in \text{ext}(B_{X^*})$, we say $f \sim g$ if and only if $f = \lambda g$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. We denote the quotient set by $\text{ext}(B_{X^*}) / \sim$.

Theorem

Let X be an L_1 -predual. Then the following statements hold:

- (a) If $ext(B_{X^*})/\sim$ is at most countable, then X is an SCD space. In particular, $SCD(B_X) = B_X$;
- (b) If $ext(B_{X^*})/\sim$ is uncountable, then $SCD(B_X) = \emptyset$.

Proof.

(a). If $\operatorname{ext}(B_{X^*})/\sim$ is at most countable, then it is known that X^* is separable. Thus X^* has the RNP, and hence X is an SCD space (Ex. 3.2, AKMMS), in particular, $\operatorname{SCD}(B_X) = B_X$.

Proof.

(a). If $\operatorname{ext}(B_{X^*})/\sim$ is at most countable, then it is known that X^* is separable. Thus X^* has the RNP, and hence X is an SCD space (Ex. 3.2, AKMMS), in particular, $\operatorname{SCD}(B_X) = B_X$.

(b). Assume that $\exp((B_{X^*}))/\sim$ is uncountable and consider the decomposition (3.1). It is known that $\exp((B_{L_1(S,\Sigma,\nu)})) = \emptyset$ whenever ν is a non-atomic measure. Thus

$$\operatorname{ext}(B_{X^*}) \subset \{0\} \times \operatorname{ext}(B_{\ell_1(I)}). \tag{3.2}$$

Moreover, ext $(B_{\ell_1(I)}) = \{\lambda e_i : i \in I, |\lambda| = 1\}$, where $e_i(j) = \delta_{ij}$. Now since the set ext $(B_{X^*})/\sim$ is uncountable, we deduce that I is uncountable (by (3.2)). It is known that $\ell_1(I)$ then fails (-1)-BCP and then by (CLL (2023)) the absolute sum $L_1(S, \Sigma, \nu) \oplus_1 \ell_1(I)$ also fails (-1)-BCP. Thus, we obtain that $SCD(B_X) = \emptyset$.

Table of Contents

- 1 Introduction and background
- 2 SCD points
- **③** SCD points in L_1 -preduals
- General SCD points in direct sums
- 5 SCD points in projective tensor product

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 6 SCD points in Lipschitz-free spaces
- Some more applications
- 8 References

SCD points in ℓ_p -sums

Let X and Y be Banach spaces

Theorem

Then $(a, b) \in \text{SCD}(B_{X \oplus_{\infty} Y})$ if and only if $a \in \text{SCD}(B_X)$ and $b \in \text{SCD}(B_Y)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

SCD points in ℓ_p -sums

Let X and Y be Banach spaces

Theorem

Then $(a, b) \in \text{SCD}(B_{X \oplus_{\infty} Y})$ if and only if $a \in \text{SCD}(B_X)$ and $b \in \text{SCD}(B_Y)$.

Proposition

Let $1 \le p < \infty$. (a) If $a \in SCD(B_X)$, then $(a, 0) \in SCD(B_{X \oplus_p Y})$. (b) If $a \in S_X$ and $(a, 0) \in SCD(B_{X \oplus_p Y})$, then $a \in SCD(B_X)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SCD points in ℓ_p -sums

Let X and Y be Banach spaces

Theorem

Then
$$(a, b) \in \text{SCD}(B_{X \oplus_{\infty} Y})$$
 if and only if $a \in \text{SCD}(B_X)$ and $b \in \text{SCD}(B_Y)$.

Proposition

Let $1 \leq p < \infty$.

```
(a) If a \in \text{SCD}(B_X), then (a, 0) \in \text{SCD}(B_{X \oplus_p Y}).
```

(b) If $a \in S_X$ and $(a, 0) \in \text{SCD}(B_{X \oplus_p Y})$, then $a \in \text{SCD}(B_X)$.

Theorem

Let $(a, b) \in S_{X \oplus_1 Y}$, where $a \in X \setminus \{0\}$ and $b \in Y \setminus \{0\}$. Then $(a, b) \in \text{SCD}(B_{X \oplus_1 Y})$ if and only if $\frac{a}{\|a\|} \in \text{SCD}(B_X)$ and $\frac{b}{\|b\|} \in \text{SCD}(B_Y)$.

Let (X_n) be Banach spaces. Consider $X := \left(\bigoplus_{n=1}^{\infty} X_n\right)_p$ endowed with the norm

$$\|x\| = \Big(\sum_{n=1}^{\infty} \|x_n\|^p\Big)^{1/p}, \text{ where } x = (x_n)_{n=1}^{\infty} \text{ and } 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let (X_n) be Banach spaces. Consider $X := \left(\bigoplus_{n=1}^{\infty} X_n\right)_p$ endowed with the norm

$$\|x\| = \Big(\sum_{n=1}^{\infty} \|x_n\|^p\Big)^{1/p}$$
, where $x = (x_n)_{n=1}^{\infty}$ and $1 .$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

If (X_n) is arbitrary, then $0 \in SCD(B_X)$.

Let (X_n) be Banach spaces. Consider $X := \left(\bigoplus_{n=1}^{\infty} X_n\right)_p$ endowed with the norm

$$\|x\| = \Big(\sum_{n=1}^{\infty} \|x_n\|^p\Big)^{1/p}$$
, where $x = (x_n)_{n=1}^{\infty}$ and $1 .$

Theorem

If
$$(X_n)$$
 is arbitrary, then $0 \in SCD(B_X)$.

Proposition

Assume that $X := E \oplus_p Y$, where E has the Daugavet property, Y is arbitrary, and $1 . If <math>(a, b) \in SCD(B_X)$, then a = 0.

Let (X_n) be Banach spaces. Consider $X := \left(\bigoplus_{n=1}^{\infty} X_n\right)_p$ endowed with the norm

$$\|x\| = \Big(\sum_{n=1}^{\infty} \|x_n\|^p\Big)^{1/p}$$
, where $x = (x_n)_{n=1}^{\infty}$ and $1 .$

Theorem

If
$$(X_n)$$
 is arbitrary, then $0 \in SCD(B_X)$.

Proposition

Assume that $X := E \oplus_p Y$, where E has the Daugavet property, Y is arbitrary, and $1 . If <math>(a, b) \in SCD(B_X)$, then a = 0.

Theorem

Consider the Banach space $X := \left(\bigoplus_{n=1}^{\infty} E_n\right)_p$, where $1 and <math>E_n$ are spaces with the Daugavet property. Then $SCD(B_X) = \{0\}$.

Table of Contents

- 1 Introduction and background
- 2 SCD points
- \bigcirc SCD points in L_1 -preduals
- 4 SCD points in direct sums
- 5 SCD points in projective tensor product

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 6 SCD points in Lipschitz-free spaces
- Some more applications
- 8 References

SCD points in projective tensor product

Problem

If X and Y are SCD spaces, then so is $X \hat{\otimes}_{\pi} Y$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

SCD points in projective tensor product

Problem

If X and Y are SCD spaces, then so is $X \hat{\otimes}_{\pi} Y$?

Theorem

Let X and Y be real Banach spaces. If $a \in dent(B_X)$ and $b \in SCD(B_Y) \setminus \{0\}$, then $a \otimes b \in SCD(B_{X \otimes_{\pi} Y})$.

SCD points in projective tensor product

Problem

If X and Y are SCD spaces, then so is $X \hat{\otimes}_{\pi} Y$?

Theorem

Let X and Y be real Banach spaces. If $a \in dent(B_X)$ and $b \in SCD(B_Y) \setminus \{0\}$, then $a \otimes b \in SCD(B_{X \otimes_{\pi} Y})$.

Corollary

Let X and Y be real Banach spaces such that B_X is dentable and $SCD(B_Y) = B_Y$. Then $SCD(B_{X\hat{\otimes}_{\pi}Y}) = B_{X\hat{\otimes}_{\pi}Y}$. If B_X is also separable and B_Y is an SCD set, then $B_{X\hat{\otimes}_{\pi}Y}$ is an SCD set.

Table of Contents

- 1 Introduction and background
- 2 SCD points
- \bigcirc SCD points in L_1 -preduals
- 4 SCD points in direct sums
- 5 SCD points in projective tensor product
- 6 SCD points in Lipschitz-free spaces
 - Some more applications

8 References

A point $x_0 \in B_X$ is a strongly exposed point if there is a $x^* \in X^*$ such that $\operatorname{diam}(S(B_X, x^*, \alpha)) \to 0$ whenever $\alpha \to 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A point $x_0 \in B_X$ is a strongly exposed point if there is a $x^* \in X^*$ such that $\operatorname{diam}(S(B_X, x^*, \alpha)) \to 0$ whenever $\alpha \to 0$.

Theorem

Let *M* be a compact metric space and let $\mu \in S_{\mathcal{F}(M)}$. TFAE:

- (i) μ is an SCD point.
- (ii) $\mu \in \overline{\operatorname{conv}}(\operatorname{str.exp}(B_{\mathcal{F}(M)})).$

In particular, $B_{\mathcal{F}(M)}$ is SCD if and only if $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(\operatorname{str.exp}(B_{\mathcal{F}(M)}))$.

SCD points in $\mathcal{F}(M)$

Recall that M is a proper if every closed bounded set is compact. Given two points $x, y \in M$, we write

$$[x,y] := \{z \in M : d(x,z) + d(y,z) = d(x,y)\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Moreover, *M* is rotund if, given R > 0, the condition $x, y \in B(0, R)$ implies $[x, y] \subseteq B(0, R)$.

SCD points in $\mathcal{F}(M)$

Recall that M is a proper if every closed bounded set is compact. Given two points $x, y \in M$, we write

$$[x,y] := \{z \in M : d(x,z) + d(y,z) = d(x,y)\}.$$

Moreover, *M* is rotund if, given R > 0, the condition $x, y \in B(0, R)$ implies $[x, y] \subseteq B(0, R)$.

Example

If M is a (closed) subset of a strictly convex Banach space X, then M is rotund.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SCD points in $\mathcal{F}(M)$

Recall that M is a proper if every closed bounded set is compact. Given two points $x, y \in M$, we write

$$[x,y] := \{z \in M : d(x,z) + d(y,z) = d(x,y)\}.$$

Moreover, *M* is rotund if, given R > 0, the condition $x, y \in B(0, R)$ implies $[x, y] \subseteq B(0, R)$.

Example

If M is a (closed) subset of a strictly convex Banach space X, then M is rotund.

Theorem

Let M be a proper and rotund metric space and let $\mu \in S_{\mathcal{F}(M)}$. TFAE:

(i) μ is an SCD point.

(ii) $\mu \in \overline{\operatorname{conv}}(\operatorname{dent}(B_{\mathcal{F}(M)})).$

In particular, $B_{\mathcal{F}(M)}$ is SCD if, and only if, $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}(\operatorname{dent}(B_{\mathcal{F}(M)})).$

Table of Contents

- 1 Introduction and background
- 2 SCD points
- \bigcirc SCD points in L_1 -preduals
- 4 SCD points in direct sums
- 5 SCD points in projective tensor product
- 6 SCD points in Lipschitz-free spaces
- Some more applications

B References

Applications

Let X be a Banach space and let Y be a subspace of X.

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000)) If X has the Daugavet property and Y is an M-ideal in X or $(X/Y)^*$ is separable, then Y has the Daugavet property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Applications

Let X be a Banach space and let Y be a subspace of X.

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))

If X has the Daugavet property and Y is an M-ideal in X or $(X/Y)^*$ is separable, then Y has the Daugavet property.

Theorem

If X has the Daugavet property and $0 \in X/Y$ satisfies that 0 is an SCD point in any convex subset $C \subset B_{X/Y}$ containing it, then Y has the Daugavet property.

Applications

Let X be a Banach space and let Y be a subspace of X.

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))

If X has the Daugavet property and Y is an M-ideal in X or $(X/Y)^*$ is separable, then Y has the Daugavet property.

Theorem

If X has the Daugavet property and $0 \in X/Y$ satisfies that 0 is an SCD point in any convex subset $C \subset B_{X/Y}$ containing it, then Y has the Daugavet property.

And one more ...

Theorem

If X is separable and X^* fails (-1)-BCP, then X contains ℓ_1 .

Table of Contents

- 1 Introduction and background
- 2 SCD points
- \bigcirc SCD points in L_1 -preduals
- 4 SCD points in direct sums
- 5 SCD points in projective tensor product

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 6 SCD points in Lipschitz-free spaces
- Some more applications

References (1/2)

- T. A. ABRAHAMSEN, R. HALLER, V. LIMA, AND K. PIRK, *Delta-and Daugavet points in Banach spaces*, Proc. Edinb. Math. Soc. (2020).
- A. AVILÉS, V. KADETS, M. MARTÍN, J. MERÍ, AND
 V. SHEPELSKA, *Slicely countably determined Banach spaces*, Trans. Am. Math. Soc. (2010).
- S. CIACI, J. LANGEMETS, AND A. LISSITSIN, Attaining strong diameter two property for infinite cardinals, J. Math. Anal. Appl. (2022).
- S. CIACI, J. LANGEMETS, AND A. LISSITSIN, A characterization of Banach spaces containing l₁(κ) via ball-covering properties, lsr. J. Math. (2023).
- A. J. GUIRAO, A. LISSITSIN, AND V. MONTESINOS, *Some remarks* on the ball-covering property, J. Math. Anal. Appl. (2019).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- V. KADETS, M. MARTIN, J. MERI, AND D. WERNER, Lushness, Numerical Index 1 and the Daugavet Property in Rearrangement Invariant Spaces, Can. J. Math. (2013)
- V. M. KADETS, R. V. SHVIDKOY, G. G. SIROTKIN, AND D. WERNER, Banach spaces with the Daugavet property, Trans. Am. Math. Soc. (2000).
- H. P. ROSENTHAL, On the structure of nondentable closed bounded convex sets, Adv. in Math. (1988).
- T. VEEORG, Characterizations of Daugavet points and delta-points in Lipschitz-free spaces, Stud. Math. (2023).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・