Slicely countably determined points in Banach spaces

Johann Langemets

July 18th, 2023
XXII Luís Santaló School
Linear and non-linear analysis in Banach spaces
Santander, Spain ©

Colaboradores

Ongoing joint work with:
M. Lõo 』, M. Martín © and A. Rueda Zoca ©

Outline of the talk

(1) Introduction and background
(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(6) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

This work was supported by the Estonian Research Council grant (PSG487).

Table of Contents

(1) Introduction and background
(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(5) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

Notation

- X real or complex Banach space, X^{*} dual space
- S_{X} unit sphere, B_{X} closed unit ball
- $\operatorname{conv}(\cdot)$ convex hull, $\overline{\operatorname{conv}}(\cdot)$ closed convex hull A slice of A (bounded convex $\subset X$) is a (nonempty) subset of the form
$S\left(A, x^{*}, \alpha\right):=\left\{x \in A: \operatorname{Re} x^{*}(x)>\sup \operatorname{Re} x^{*}(A)-\alpha\right\} \quad\left(x^{*} \in X^{*}, \alpha>0\right)$
A convex combination of slices of A is the set

$$
\sum_{i=1}^{n} \lambda_{i} S\left(A, x_{i}^{*}, \alpha_{i}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ and $\sum_{i=1}^{n} \lambda_{i}=1$.

SCD sets and spaces

Let $A \subset X$ be bounded and convex.

Definition (A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska (2010))

A sequence $\left\{V_{n}: n \in \mathbb{N}\right\}$ of subsets of A is determining for A, if one of the following equivalent conditions hold:

- if $B \subset A$ satisfies $B \cap V_{n} \neq \emptyset$ for every n, then $A \subset \overline{\operatorname{conv}}(B)$;
- if $x_{n} \in V_{n}$ for every n, then $A \subset \overline{\operatorname{conv}}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right)$;
- if for every slice S of A, there is a V_{m} such that $V_{m} \subset S$.

SCD sets and spaces

Let $A \subset X$ be bounded and convex.

Definition (A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska (2010))

A sequence $\left\{V_{n}: n \in \mathbb{N}\right\}$ of subsets of A is determining for A, if one of the following equivalent conditions hold:

- if $B \subset A$ satisfies $B \cap V_{n} \neq \emptyset$ for every n, then $A \subset \overline{\operatorname{conv}}(B)$;
- if $x_{n} \in V_{n}$ for every n, then $A \subset \overline{\operatorname{conv}}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right)$;
- if for every slice S of A, there is a V_{m} such that $V_{m} \subset S$.

Definition (AKMMS (2010))

The set A is said to be slicely countably determined (an SCD set in short), if there exists a determining sequence of slices of A.

Properties and positive examples of SCD sets

Proposition (AKMMS (2010))

- A is SCD iff \bar{A} is SCD
- If A is an $S C D$ set, then A is separable

Properties and positive examples of SCD sets

Proposition (AKMMS (2010))

- A is $S C D$ iff \bar{A} is $S C D$
- If A is an $S C D$ set, then A is separable

Example (AKMMS (2010))

If A is separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A))$, then A is SCD. In particular, if X has RNP, then every closed and bounded subset is SCD.

Properties and positive examples of SCD sets

Proposition (AKMMS (2010))

- A is $S C D$ iff \bar{A} is $S C D$
- If A is an SCD set, then A is separable

Example (AKMMS (2010))

If A is separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A))$, then A is SCD. In particular, if X has RNP, then every closed and bounded subset is SCD.

Corollary (AKMMS (2010))

If X is separable and LUR, then B_{X} is SCD. Hence, every separable space can be renormed such that $B_{(X,|\cdot|)}$ is $S C D$.

Properties and positive examples of SCD sets

Proposition (AKMMS (2010))

- A is $S C D$ iff \bar{A} is $S C D$
- If A is an SCD set, then A is separable

Example (AKMMS (2010))

If A is separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A))$, then A is SCD. In particular, if X has RNP, then every closed and bounded subset is SCD.

Corollary (AKMMS (2010))

If X is separable and $L U R$, then B_{X} is SCD. Hence, every separable space can be renormed such that $B_{(X,|\cdot|)}$ is $S C D$.

Example (AKMMS (2010))

If X^{*} is separable, then every A is SCD.

Negative examples

Example (AKMMS (2010))

If X has the Daugavet property, then B_{X} is not SCD.

Negative examples

Example (AKMMS (2010))

If X has the Daugavet property, then B_{X} is not SCD.

Example (AKMMS (2010))

A subset of an SCD set need not to be an SCD set.

Negative examples

Example (AKMMS (2010))

If X has the Daugavet property, then B_{X} is not SCD.

Example (AKMMS (2010))

A subset of an SCD set need not to be an SCD set.

Proof.

Consider $X:=C[0,1]$. Since X is separable, it admits an equivalent LUR renorming. Hence $B_{(X,|\cdot|)}$ is SCD, but there is a $\alpha \in \mathbb{R}$ such that

$$
\alpha B_{(X,\|\cdot\|)} \subset B_{(X,|\cdot|)}
$$

and $B_{(X,\|\cdot\|)}$ is not SCD.

SCD spaces

Definition (AKMMS (2010))

Separable space X is an SCD space if all of its convex bounded subsets are SCD.

SCD spaces

Definition (AKMMS (2010))

Separable space X is an SCD space if all of its convex bounded subsets are SCD.

Example (AKMMS (2010))

- If X separable and has RNP, then X is an SCD space
- If X is separable and $X \nsupseteq \ell_{1}$, then X is an SCD space

SCD spaces

Definition (AKMMS (2010))

Separable space X is an SCD space if all of its convex bounded subsets are SCD.

Example (AKMMS (2010))

- If X separable and has RNP, then X is an SCD space
- If X is separable and $X \nsupseteq \ell_{1}$, then X is an SCD space

Example (V. Kadets, M. Martin, J. Meri, D. Werner (2013))

If X has a 1 -unconditional basis, then B_{X} is SCD.

Problem

If X has a 1 -unconditional basis, then X is an SCD space?

Table of Contents

(1) Introduction and background
(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(6) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

Determining sequence

Let $A \subset X$ be bounded and convex.

Definition

We say that a countable sequence $\left\{V_{n}: n \in \mathbb{N}\right\}$ of subsets of A is determining for point $a \in A$ if $a \in \overline{\operatorname{conv}}(B)$ for every $B \subset A$ intersecting all the sets V_{n}.

Determining sequence

Let $A \subset X$ be bounded and convex.

Definition

We say that a countable sequence $\left\{V_{n}: n \in \mathbb{N}\right\}$ of subsets of A is determining for point $a \in A$ if $a \in \overline{\operatorname{conv}}(B)$ for every $B \subset A$ intersecting all the sets V_{n}.

Proposition

For a sequence $\left\{V_{n}: n \in \mathbb{N}\right\}$ of subsets of A, the following conditions are equivalent:
(i) $\left\{V_{n}: n \in \mathbb{N}\right\}$ is determining for a;
(ii) for every slice S of A with $a \in S$, there is $m \in \mathbb{N}$ such that $V_{m} \subset S$;
(iii) if $x_{n} \in V_{n}$ for every $n \in \mathbb{N}$, then $a \in \overline{\operatorname{conv}}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right)$.

SCD points

Definition

A point $a \in A$ is called a slicely countably determined point of A (an SCD point of A in short), if there exists a determining sequence of slices of A for the point a.

We denote the set of all SCD points of A by $\operatorname{SCD}(A)$.

SCD points

Definition

A point $a \in A$ is called a slicely countably determined point of A (an SCD point of A in short), if there exists a determining sequence of slices of A for the point a.

We denote the set of all SCD points of A by $\operatorname{SCD}(A)$.

Lemma

The following statements hold:
(1) If A is an SCD set, then every $a \in A$ is an SCD point.
(2) If every $a \in A$ is an SCD point and A is separable, then A is an SCD set.

First examples of SCD points

Proposition

The following conditions are equivalent:
(i) $a \in \operatorname{SCD}(A)$;
(ii) there exists a sequence of relatively weakly open sets $\left\{W_{n}: n \in \mathbb{N}\right\} \subset A$, which is determining for a;
(iii) there exists a sequence of convex combinations of slices $\left\{C_{n}: n \in \mathbb{N}\right\} \subset A$, which is determining for a.

First examples of SCD points

Proposition

The following conditions are equivalent:
(i) $a \in \operatorname{SCD}(A)$;
(ii) there exists a sequence of relatively weakly open sets
$\left\{W_{n}: n \in \mathbb{N}\right\} \subset A$, which is determining for a;
(iii) there exists a sequence of convex combinations of slices $\left\{C_{n}: n \in \mathbb{N}\right\} \subset A$, which is determining for a.

A point a of a closed bounded and convex set A is called a strongly regular point of A if for every $\varepsilon>0$ there exists a convex combination C of slices of A such that $a \in \bar{C}$ and $\operatorname{diam}(C)<\varepsilon$ (H. Rosenthal (1988)).

First examples of SCD points

Proposition

The following conditions are equivalent:
(i) $a \in \operatorname{SCD}(A)$;
(ii) there exists a sequence of relatively weakly open sets $\left\{W_{n}: n \in \mathbb{N}\right\} \subset A$, which is determining for a;
(iii) there exists a sequence of convex combinations of slices $\left\{C_{n}: n \in \mathbb{N}\right\} \subset A$, which is determining for a.

A point a of a closed bounded and convex set A is called a strongly regular point of A if for every $\varepsilon>0$ there exists a convex combination C of slices of A such that $a \in \bar{C}$ and $\operatorname{diam}(C)<\varepsilon$ (H. Rosenthal (1988)).

Lemma

If $a \in A$ is a strongly regular point (in particular, denting point), then a is an SCD point.

SCD points vs Daugavet points

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_{X}$ is a Daugavet point if for every slice S of B_{X} and for every $\varepsilon>0$ there is a $y \in S$ with $\|x-y\| \geq 2-\varepsilon$.
- X has the Daugavet property if every $x \in S_{X}$ is a Daugavet point.

SCD points vs Daugavet points

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_{X}$ is a Daugavet point if for every slice S of B_{X} and for every $\varepsilon>0$ there is a $y \in S$ with $\|x-y\| \geq 2-\varepsilon$.
- X has the Daugavet property if every $x \in S_{X}$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_{c}.

SCD points vs Daugavet points

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_{X}$ is a Daugavet point if for every slice S of B_{X} and for every $\varepsilon>0$ there is a $y \in S$ with $\|x-y\| \geq 2-\varepsilon$.
- X has the Daugavet property if every $x \in S_{X}$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_{c}.

Example (T. Veeorg (2023))

There exists a Banach space (actually a Lipschitz-free space) with the RNP and a Daugavet point.

SCD points vs Daugavet points

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_{X}$ is a Daugavet point if for every slice S of B_{X} and for every $\varepsilon>0$ there is a $y \in S$ with $\|x-y\| \geq 2-\varepsilon$.
- X has the Daugavet property if every $x \in S_{X}$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_{c}.

Example (T. Veeorg (2023))

There exists a Banach space (actually a Lipschitz-free space) with the RNP and a Daugavet point.
$x_{0} \in \operatorname{SCD}(A)$ if $\exists\left\{S_{n}\right\} \subset A$ such that $\forall x_{0} \in S \subset A$ there is $S_{m} \subset S$

SCD points vs Daugavet points

Recall that (T. A. Abrahamsen, R. Haller, V. Lima, K. Pirk (2020))

- $x \in S_{X}$ is a Daugavet point if for every slice S of B_{X} and for every $\varepsilon>0$ there is a $y \in S$ with $\|x-y\| \geq 2-\varepsilon$.
- X has the Daugavet property if every $x \in S_{X}$ is a Daugavet point.

Example

The constant function 1 is both a Daugavet point and an SCD point in B_{c}.

Example (T. Veeorg (2023))

There exists a Banach space (actually a Lipschitz-free space) with the RNP and a Daugavet point.
$x_{0} \in \operatorname{SCD}(A)$ if $\exists\left\{S_{n}\right\} \subset A$ such that $\forall x_{0} \in S \subset A$ there is $S_{m} \subset S$

Example

Assume that X has the RNP and let $x_{0} \in S_{X}$ be a Daugavet point. Then for every $\varepsilon>0$ there exists a sequence of slices $\left\{S_{n}: n \in \mathbb{N}\right\} \subset B_{X}$ determining for x_{0} such that $d\left(x_{0}, S_{n}\right)>2-\varepsilon$ for every $n \in \mathbb{N}$.

Properties of $\operatorname{SCD}(A)$

Lemma

Let $A \subset X$ be bounded and convex. Then

- $\operatorname{SCD}(A)$ is convex and norm closed.
- if A is balanced, then so is $\operatorname{SCD}(A)$.

Properties of $\operatorname{SCD}(A)$

Lemma

Let $A \subset X$ be bounded and convex. Then

- $\operatorname{SCD}(A)$ is convex and norm closed.
- if A is balanced, then so is $\operatorname{SCD}(A)$.

Corollary

$\operatorname{SCD}\left(B_{X}\right) \neq \emptyset$ if and only if $0 \in \operatorname{SCD}\left(B_{X}\right)$.

When is $\operatorname{SCD}\left(B_{X}\right)=\emptyset ?$

A Banach space X is said to have property (\approx) if for all sequences of slices $\left\{S_{n}: n \in \mathbb{N}\right\}$ of B_{X}, there are $\gamma \in(0,1], x_{n} \in S_{n}$, and $x^{*} \in S_{X^{*}}$ such that $\operatorname{Re} x^{*}\left(x_{n}\right) \geq \gamma$ for every $n \in \mathbb{N}$.

When is $\operatorname{SCD}\left(B_{X}\right)=\emptyset ?$

A Banach space X is said to have property (\approx) if for all sequences of slices $\left\{S_{n}: n \in \mathbb{N}\right\}$ of B_{X}, there are $\gamma \in(0,1], x_{n} \in S_{n}$, and $x^{*} \in S_{X^{*}}$ such that $\operatorname{Re} x^{*}\left(x_{n}\right) \geq \gamma$ for every $n \in \mathbb{N}$.

Remark

If $\gamma=1$, then $(\approx)=1-$ ASD2P $_{\omega}$ (S. Ciaci, J. L., A. Lissitsin (2022))

When is $\operatorname{SCD}\left(B_{X}\right)=\emptyset ?$

A Banach space X is said to have property (\approx) if for all sequences of slices $\left\{S_{n}: n \in \mathbb{N}\right\}$ of B_{X}, there are $\gamma \in(0,1], x_{n} \in S_{n}$, and $x^{*} \in S_{X^{*}}$ such that $\operatorname{Re} x^{*}\left(x_{n}\right) \geq \gamma$ for every $n \in \mathbb{N}$.

Remark
If $\gamma=1$, then $(\approx)=1-$ ASD2P $_{\omega}$ (S. Ciaci, J. L., A. Lissitsin (2022))

Example

- $C[0,1], L_{1}[0,1], L_{\infty}[0,1], \ell_{\infty}$, and $c_{0}(\Gamma)$, where Γ is uncountable, all have (\approx).
- $X \oplus_{p} Y$ has (\approx) whenever X and Y have (\approx).

When is $\operatorname{SCD}\left(B_{X}\right)=\emptyset ?$

A Banach space X is said to have property (\approx) if for all sequences of slices $\left\{S_{n}: n \in \mathbb{N}\right\}$ of B_{X}, there are $\gamma \in(0,1], x_{n} \in S_{n}$, and $x^{*} \in S_{X^{*}}$ such that $\operatorname{Re} x^{*}\left(x_{n}\right) \geq \gamma$ for every $n \in \mathbb{N}$.

Remark

If $\gamma=1$, then $(\approx)=1-$ ASD2P $_{\omega}$ (S. Ciaci, J. L., A. Lissitsin (2022))

Example

- $C[0,1], L_{1}[0,1], L_{\infty}[0,1], \ell_{\infty}$, and $c_{0}(\Gamma)$, where Γ is uncountable, all have (\approx).
- $X \oplus_{p} Y$ has (\approx) whenever X and Y have (\approx).

Theorem

If a Banach space X has property (\approx), then $\operatorname{SCD}\left(B_{X}\right)=\emptyset$.

When is $\operatorname{SCD}\left(B_{X}\right)=\emptyset ?$

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))

A Banach space X is said to fail (-1)-BCP if for any separable subspace $Y \subset X$ there exists $x \in S_{X}$ such that equality

$$
\begin{equation*}
\|y+\lambda x\|=\|y\|+|\lambda| \tag{2.1}
\end{equation*}
$$

holds for every $y \in Y$ and $\lambda \in \mathbb{R}$.

When is $\operatorname{SCD}\left(B_{X}\right)=\emptyset ?$

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))

A Banach space X is said to fail (-1)-BCP if for any separable subspace $Y \subset X$ there exists $x \in S_{X}$ such that equality

$$
\begin{equation*}
\|y+\lambda x\|=\|y\|+|\lambda| \tag{2.1}
\end{equation*}
$$

holds for every $y \in Y$ and $\lambda \in \mathbb{R}$.

Example (GLM (2019) + S. Ciaci, J. L., A. Lissitsin (2023))

Examples of Banach spaces failing the $(-1)-\mathrm{BCP}$ include $\ell_{1}(I)$, where I is an uncountable set, the space ℓ_{∞} / c_{0}, and X^{*} whenever X has the Daugavet property.

When is $\operatorname{SCD}\left(B_{X}\right)=\emptyset ?$

Definition (A. Guirao, A. Lissitsin, V. Montesinos (2019))

A Banach space X is said to fail (-1)-BCP if for any separable subspace $Y \subset X$ there exists $x \in S_{X}$ such that equality

$$
\begin{equation*}
\|y+\lambda x\|=\|y\|+|\lambda| \tag{2.1}
\end{equation*}
$$

holds for every $y \in Y$ and $\lambda \in \mathbb{R}$.

Example (GLM (2019) + S. Ciaci, J. L., A. Lissitsin (2023))

Examples of Banach spaces failing the $(-1)-\mathrm{BCP}$ include $\ell_{1}(I)$, where I is an uncountable set, the space ℓ_{∞} / c_{0}, and X^{*} whenever X has the Daugavet property.

The following chain of implications holds:
X is Daugavet $\Rightarrow X^{*}$ fails $(-1)-\mathrm{BCP} \Rightarrow X$ has $(\approx) \Rightarrow \operatorname{SCD}\left(B_{X}\right)=\emptyset$

Table of Contents

(1) Introduction and background

(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(6) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

SCD points in L_{1}-preduals

Recall that given a measured space (S, Σ, μ) a Banach space X is said to be an L_{1}-predual, if $X^{*}=L_{1}(S, \Sigma, \mu)$. It is known that

$$
\begin{equation*}
L_{1}(S, \Sigma, \mu)=L_{1}(S, \Sigma, \nu) \oplus_{1} \ell_{1}(I) \tag{3.1}
\end{equation*}
$$

where ν is a non-atomic measure and I is some index set.

SCD points in L_{1}-preduals

Recall that given a measured space (S, Σ, μ) a Banach space X is said to be an L_{1}-predual, if $X^{*}=L_{1}(S, \Sigma, \mu)$. It is known that

$$
\begin{equation*}
L_{1}(S, \Sigma, \mu)=L_{1}(S, \Sigma, \nu) \oplus_{1} \ell_{1}(I) \tag{3.1}
\end{equation*}
$$

where ν is a non-atomic measure and I is some index set. For $f, g \in \operatorname{ext}\left(B_{X^{*}}\right)$, we say $f \sim g$ if and only if $f=\lambda g$ for some $\lambda \in \mathbb{C}$ with $|\lambda|=1$. We denote the quotient set by $\operatorname{ext}\left(B_{X^{*}}\right) / \sim$.

SCD points in L_{1}-preduals

Recall that given a measured space (S, Σ, μ) a Banach space X is said to be an L_{1}-predual, if $X^{*}=L_{1}(S, \Sigma, \mu)$. It is known that

$$
\begin{equation*}
L_{1}(S, \Sigma, \mu)=L_{1}(S, \Sigma, \nu) \oplus_{1} \ell_{1}(I) \tag{3.1}
\end{equation*}
$$

where ν is a non-atomic measure and I is some index set. For $f, g \in \operatorname{ext}\left(B_{X^{*}}\right)$, we say $f \sim g$ if and only if $f=\lambda g$ for some $\lambda \in \mathbb{C}$ with $|\lambda|=1$. We denote the quotient set by $\operatorname{ext}\left(B_{X^{*}}\right) / \sim$.

Theorem

Let X be an L_{1}-predual. Then the following statements hold:
(a) If ext $\left(B_{X^{*}}\right) / \sim$ is at most countable, then X is an SCD space. In particular, $\operatorname{SCD}\left(B_{X}\right)=B_{X}$;
(b) If ext $\left(B_{X^{*}}\right) / \sim$ is uncountable, then $\operatorname{SCD}\left(B_{X}\right)=\emptyset$.

SCD points in L_{1}-preduals

Proof.

(a). If ext $\left(B_{X^{*}}\right) / \sim$ is at most countable, then it is known that X^{*} is separable. Thus X^{*} has the RNP, and hence X is an SCD space (Ex. 3.2, AKMMS), in particular, $\operatorname{SCD}\left(B_{X}\right)=B_{X}$.

SCD points in L_{1}-preduals

Proof.

(a). If ext $\left(B_{X^{*}}\right) / \sim$ is at most countable, then it is known that X^{*} is separable. Thus X^{*} has the RNP, and hence X is an SCD space (Ex. 3.2, AKMMS), in particular, $\operatorname{SCD}\left(B_{X}\right)=B_{X}$.
(b). Assume that ext $\left(B_{X^{*}}\right) / \sim$ is uncountable and consider the decomposition (3.1). It is known that $\operatorname{ext}\left(B_{L_{1}(\Omega, \Sigma, \nu)}\right)=\emptyset$ whenever ν is a non-atomic measure. Thus

$$
\begin{equation*}
\operatorname{ext}\left(B_{X^{*}}\right) \subset\{0\} \times \operatorname{ext}\left(B_{\ell_{1}(I)}\right) . \tag{3.2}
\end{equation*}
$$

Moreover, $\operatorname{ext}\left(B_{\ell_{1}(I)}\right)=\left\{\lambda e_{i}: i \in I,|\lambda|=1\right\}$, where $e_{i}(j)=\delta_{i j}$. Now since the set ext $\left(B_{X^{*}}\right) / \sim$ is uncountable, we deduce that l is uncountable (by (3.2)). It is known that $\ell_{1}(I)$ then fails (-1)-BCP and then by (CLL (2023)) the absolute sum $L_{1}(S, \Sigma, \nu) \oplus_{1} \ell_{1}(I)$ also fails (-1)-BCP. Thus, we obtain that $\operatorname{SCD}\left(B_{X}\right)=\emptyset$.

Table of Contents

(1) Introduction and background

(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product

6 SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

SCD points in ℓ_{p}-sums

Let X and Y be Banach spaces

Theorem

Then $(a, b) \in \operatorname{SCD}\left(B_{X \oplus_{\infty} Y}\right)$ if and only if $a \in \operatorname{SCD}\left(B_{X}\right)$ and $b \in \operatorname{SCD}\left(B_{Y}\right)$.

SCD points in ℓ_{p}-sums

Let X and Y be Banach spaces

Theorem

Then $(a, b) \in \operatorname{SCD}\left(B_{X \oplus_{\infty} Y}\right)$ if and only if $a \in \operatorname{SCD}\left(B_{X}\right)$ and $b \in \operatorname{SCD}\left(B_{Y}\right)$.

Proposition

Let $1 \leq p<\infty$.
(a) If $a \in \operatorname{SCD}\left(B_{X}\right)$, then $(a, 0) \in \operatorname{SCD}\left(B_{X \oplus_{p} Y}\right)$.
(b) If $a \in S_{X}$ and $(a, 0) \in \operatorname{SCD}\left(B_{X \oplus_{p} Y}\right)$, then $a \in \operatorname{SCD}\left(B_{X}\right)$.

SCD points in ℓ_{p}-sums

Let X and Y be Banach spaces

Theorem

Then $(a, b) \in \operatorname{SCD}\left(B_{X \oplus_{\infty} Y}\right)$ if and only if $a \in \operatorname{SCD}\left(B_{X}\right)$ and $b \in \operatorname{SCD}\left(B_{Y}\right)$.

Proposition

Let $1 \leq p<\infty$.
(a) If $a \in \operatorname{SCD}\left(B_{X}\right)$, then $(a, 0) \in \operatorname{SCD}\left(B_{X \oplus_{p} Y}\right)$.
(b) If $a \in S_{X}$ and $(a, 0) \in \operatorname{SCD}\left(B_{X \oplus_{p} Y}\right)$, then $a \in \operatorname{SCD}\left(B_{X}\right)$.

Theorem

Let $(a, b) \in S_{X \oplus_{1} Y}$, where $a \in X \backslash\{0\}$ and $b \in Y \backslash\{0\}$. Then $(a, b) \in \operatorname{SCD}\left(B_{X \oplus_{1} Y}\right)$ if and only if $\frac{a}{\|a\|} \in \operatorname{SCD}\left(B_{X}\right)$ and $\frac{b}{\|b\|} \in \operatorname{SCD}\left(B_{Y}\right)$.

A Banach space where $\operatorname{SCD}\left(B_{X}\right)=\{0\}$

Let $\left(X_{n}\right)$ be Banach spaces. Consider $X:=\left(\bigoplus_{n=1}^{\infty} X_{n}\right)_{p}$ endowed with the norm

$$
\|x\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}, \quad \text { where } x=\left(x_{n}\right)_{n=1}^{\infty} \text { and } 1<p<\infty
$$

A Banach space where $\operatorname{SCD}\left(B_{X}\right)=\{0\}$

Let $\left(X_{n}\right)$ be Banach spaces. Consider $X:=\left(\bigoplus_{n=1}^{\infty} X_{n}\right)_{p}$ endowed with the norm

$$
\|x\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}, \quad \text { where } x=\left(x_{n}\right)_{n=1}^{\infty} \text { and } 1<p<\infty
$$

```
Theorem
If \(\left(X_{n}\right)\) is arbitrary, then \(0 \in S C D\left(B_{X}\right)\).
```


A Banach space where $\operatorname{SCD}\left(B_{X}\right)=\{0\}$

Let $\left(X_{n}\right)$ be Banach spaces. Consider $X:=\left(\bigoplus_{n=1}^{\infty} X_{n}\right)_{p}$ endowed with the norm

$$
\|x\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}, \quad \text { where } x=\left(x_{n}\right)_{n=1}^{\infty} \text { and } 1<p<\infty
$$

Theorem

If $\left(X_{n}\right)$ is arbitrary, then $0 \in S C D\left(B_{X}\right)$.

Proposition

Assume that $X:=E \oplus_{p} Y$, where E has the Daugavet property, Y is arbitrary, and $1<p<\infty$. If $(a, b) \in \operatorname{SCD}\left(B_{X}\right)$, then $a=0$.

A Banach space where $\operatorname{SCD}\left(B_{X}\right)=\{0\}$

Let $\left(X_{n}\right)$ be Banach spaces. Consider $X:=\left(\oplus_{n=1}^{\infty} X_{n}\right)_{p}$ endowed with the norm

$$
\|x\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}, \quad \text { where } x=\left(x_{n}\right)_{n=1}^{\infty} \text { and } 1<p<\infty .
$$

Theorem

If $\left(X_{n}\right)$ is arbitrary, then $0 \in \operatorname{SCD}\left(B_{X}\right)$.

Proposition

Assume that $X:=E \oplus_{p} Y$, where E has the Daugavet property, Y is arbitrary, and $1<p<\infty$. If $(a, b) \in \operatorname{SCD}\left(B_{X}\right)$, then $a=0$.

Theorem

Consider the Banach space $X:=\left(\bigoplus_{n=1}^{\infty} E_{n}\right)_{p}$, where $1<p<\infty$ and E_{n} are spaces with the Daugavet property. Then $\operatorname{SCD}\left(B_{X}\right)=\{0\}$.

Table of Contents

(1) Introduction and background

(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(6) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

SCD points in projective tensor product

Problem

If X and Y are SCD spaces, then so is $X \hat{\otimes}_{\pi} Y$?

SCD points in projective tensor product

Problem

If X and Y are SCD spaces, then so is $X \hat{\otimes}_{\pi} Y$?

```
Theorem
Let }X\mathrm{ and }Y\mathrm{ be real Banach spaces. If a }\in\operatorname{dent}(\mp@subsup{B}{X}{})\mathrm{ and
b\inSCD(BY)\{0}, then a\otimesb\inSCD}(\mp@subsup{B}{X\mp@subsup{\hat{\otimes}}{\pi}{}Y}{})\mathrm{ .
```


SCD points in projective tensor product

Problem

If X and Y are SCD spaces, then so is $X \hat{\otimes}_{\pi} Y$?

Theorem

Let X and Y be real Banach spaces. If $a \in \operatorname{dent}\left(B_{X}\right)$ and $b \in \operatorname{SCD}\left(B_{Y}\right) \backslash\{0\}$, then $a \otimes b \in \operatorname{SCD}\left(B_{X \hat{\otimes}_{\pi} Y}\right)$.

Corollary

Let X and Y be real Banach spaces such that B_{X} is dentable and $\operatorname{SCD}\left(B_{Y}\right)=B_{Y}$. Then $\operatorname{SCD}\left(B_{X_{\hat{\otimes}_{\pi} Y}}\right)=B_{X_{\hat{\otimes}_{\pi}} Y}$. If B_{X} is also separable and B_{Y} is an SCD set, then $B_{X \hat{\otimes}_{\pi} Y}$ is an SCD set.

Table of Contents

(1) Introduction and background

(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(6) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

SCD points in $\mathcal{F}(M)$

A point $x_{0} \in B_{X}$ is a strongly exposed point if there is a $x^{*} \in X^{*}$ such that $\operatorname{diam}\left(S\left(B_{X}, x^{*}, \alpha\right)\right) \rightarrow 0$ whenever $\alpha \rightarrow 0$.

SCD points in $\mathcal{F}(M)$

A point $x_{0} \in B_{X}$ is a strongly exposed point if there is a $x^{*} \in X^{*}$ such that $\operatorname{diam}\left(S\left(B_{X}, x^{*}, \alpha\right)\right) \rightarrow 0$ whenever $\alpha \rightarrow 0$.

Theorem

Let M be a compact metric space and let $\mu \in S_{\mathcal{F}(M)}$. TFAE:
(i) μ is an SCD point.
(ii) $\mu \in \overline{\operatorname{conv}}\left(\operatorname{str} \cdot \exp \left(B_{\mathcal{F}(M)}\right)\right.$.

In particular, $B_{\mathcal{F}(M)}$ is $S C D$ if and only if $B_{\mathcal{F}(M)}=\overline{\operatorname{conv}}\left(\operatorname{str} \cdot \exp \left(B_{\mathcal{F}(M)}\right)\right)$.

SCD points in $\mathcal{F}(M)$

Recall that M is a proper if every closed bounded set is compact. Given two points $x, y \in M$, we write

$$
[x, y]:=\{z \in M: d(x, z)+d(y, z)=d(x, y)\} .
$$

Moreover, M is rotund if, given $R>0$, the condition $x, y \in B(0, R)$ implies $[x, y] \subseteq B(0, R)$.

SCD points in $\mathcal{F}(M)$

Recall that M is a proper if every closed bounded set is compact. Given two points $x, y \in M$, we write

$$
[x, y]:=\{z \in M: d(x, z)+d(y, z)=d(x, y)\}
$$

Moreover, M is rotund if, given $R>0$, the condition $x, y \in B(0, R)$ implies $[x, y] \subseteq B(0, R)$.

Example

If M is a (closed) subset of a strictly convex Banach space X, then M is rotund.

SCD points in $\mathcal{F}(M)$

Recall that M is a proper if every closed bounded set is compact. Given two points $x, y \in M$, we write

$$
[x, y]:=\{z \in M: d(x, z)+d(y, z)=d(x, y)\} .
$$

Moreover, M is rotund if, given $R>0$, the condition $x, y \in B(0, R)$ implies $[x, y] \subseteq B(0, R)$.

Example

If M is a (closed) subset of a strictly convex Banach space X, then M is rotund.

Theorem

Let M be a proper and rotund metric space and let $\mu \in S_{\mathcal{F}(M)}$. TFAE:
(i) μ is an SCD point.
(ii) $\mu \in \overline{\operatorname{conv}}\left(\operatorname{dent}\left(B_{\mathcal{F}(M)}\right)\right.$.

In particular, $B_{\mathcal{F}(M)}$ is SCD if, and only if, $B_{\mathcal{F}(M)}=\overline{\operatorname{conv}}\left(\operatorname{dent}\left(B_{\mathcal{F}(M)}\right)\right)$.

Table of Contents

(1) Introduction and background

(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(6) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

Applications

Let X be a Banach space and let Y be a subspace of X.
Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))
If X has the Daugavet property and Y is an M-ideal in X or $(X / Y)^{*}$ is separable, then Y has the Daugavet property.

Applications

Let X be a Banach space and let Y be a subspace of X.

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))

If X has the Daugavet property and Y is an M-ideal in X or $(X / Y)^{*}$ is separable, then Y has the Daugavet property.

Theorem

If X has the Daugavet property and $0 \in X / Y$ satisfies that 0 is an SCD point in any convex subset $C \subset B_{X / Y}$ containing it, then Y has the Daugavet property.

Applications

Let X be a Banach space and let Y be a subspace of X.

Theorem (V. Kadets, V. Shepelska, G. Sirotkin, D. Werner (2000))

If X has the Daugavet property and Y is an M-ideal in X or $(X / Y)^{*}$ is separable, then Y has the Daugavet property.

Theorem

If X has the Daugavet property and $0 \in X / Y$ satisfies that 0 is an SCD point in any convex subset $C \subset B_{X / Y}$ containing it, then Y has the Daugavet property.

And one more...

Theorem

If X is separable and X^{*} fails (-1)-BCP, then X contains ℓ_{1}.

Table of Contents

(1) Introduction and background
(2) SCD points
(3) SCD points in L_{1}-preduals
(4) SCD points in direct sums
(5) SCD points in projective tensor product
(6) SCD points in Lipschitz-free spaces
(7) Some more applications
(8) References

References（ $1 / 2$ ）

回 T．A．Abrahamsen，R．Haller，V．Lima，and K．Pirk，Delta－ and Daugavet points in Banach spaces，Proc．Edinb．Math．Soc． （2020）．
回 A．Avilés，V．Kadets，M．Martín，J．Merí，and V．Shepelska，Slicely countably determined Banach spaces，Trans． Am．Math．Soc．（2010）．

嗇 S．Ciaci，J．Langemets，and A．Lissitsin，Attaining strong diameter two property for infinite cardinals，J．Math．Anal．Appl． （2022）．
居 S．Ciaci，J．Langemets，and A．Lissitsin，A characterization of Banach spaces containing $\ell_{1}(\kappa)$ via ball－covering properties，Isr．J． Math．（2023）．
回 A．J．Guirao，A．Lissitsin，and V．Montesinos，Some remarks on the ball－covering property，J．Math．Anal．Appl．（2019）．

References $(2 / 2)$

围 V. Kadets, M. Martin, J. Meri, and D. Werner, Lushness, Numerical Index 1 and the Daugavet Property in Rearrangement Invariant Spaces, Can. J. Math. (2013)

围 V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces with the Daugavet property, Trans. Am. Math. Soc. (2000).
R. P. Rosenthal, On the structure of nondentable closed bounded convex sets, Adv. in Math. (1988).
T. Veeorg, Characterizations of Daugavet points and delta-points in Lipschitz-free spaces, Stud. Math. (2023).

