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Some general questions in non linear geometry of Banach spaces.

In this course, we will only consider vector spaces over R.

Question 1. What are the linear properties of Banach spaces that are
stable under non linear embeddings or equivalences (preserving distances in
various ways that have to be made precise) ?

Answers. The topology of a Banach space is determined by its dimension
when it is finite (Brouwer 1912), by its density character when the
dimension is infinite (Kadets 1960, Toruńczyk 1981).
A surjective isometry between normed spaces is affine (Mazur-Ulam 1932).

Question 2. Can we characterize in purely metric terms the linear
properties of Banach spaces that are stable under these non linear
embeddings ?

Question 3. Does the metric structure of a Banach space determine its
linear structure ?

Question 4. For a given type of embedding, describe the separable Banach
spaces that are universal for the class of separable metric spaces.



Embeddings and equivalences.

Let X and Y be two Banach spaces.

• We denote X ≃ Y if there exists a (bi)continuous linear bijection from X
onto Y . We say that X and Y are isomorphic.

• We denote X ⊂
∼
Y , if X is isomorphic to a subspace of Y .

Let (M, d) and (N, δ) be two metric spaces, f : M → N and t ≥ 0.

ρf (t) = inf{δ(f (x), f (x ′), d(x , x ′) ≥ t} is the compression modulus of f .
ωf (t) = sup{δ(f (x), f (x ′), d(x , x ′) ≤ t} is the expansion modulus of f .
ωf and ρf are the “best non decreasing functions” such that

∀x , x ′ ∈ M ρf (d(x , x
′)) ≤ δ(f (x), f (x ′)) ≤ ωf (d(x , x

′)).

• f is a Lipschitz embedding if there exist A,B > 0 such that ωf (t) ≤ At
and ρf (t) ≥ Bt, for all t ≥ 0. We denote M ↪→

L
N.

• f is coarse Lipschitz if there exist A,B > 0 such that ωf (t) ≤ At + B



• f is a coarse Lipschitz embedding if there exist A,B,C > 0 such that
ωf (t) ≤ At + C and ρf (t) ≥ Bt − C , for all t ≥ 0. We denote M ↪→

CL
N.

• f is a coarse embedding if ωf <∞ and lim∞ ρ = ∞.
We denote M ↪→

c
N.

• f is a uniform embedding if ρf (t) > 0 for all t > 0 and limt→0 ωf (t) = 0.
We denote M ↪→

u
N.

• f is a Lipschitz equivalence if f is bijective and f , f −1 are Lipschitz.
We denote M ∼

L
N.

• f is a uniform homeomorphism if f is bijective and f , f −1 are uniformly
continuous. We denote M ∼

UH
N.

• f is a coarse Lipschitz equivalence if f is coarse Lipschitz and there exist
g : N → M coarse Lipschitz and C > 0 such that

∀x ∈ M d(g ◦ f (x), x) ≤ C and ∀y ∈ N δ(f ◦ g(y), y) ≤ C .

We denote M ∼
CL

N.



The Ribe program.

Ribe (1976)
Let X and Y be two Banach spaces such that X ↪→

CL
Y .

Then there exists C ≥ 1 such that for any finite dimensional subspace E of
X , there exist a subspace F of Y and an isomorphism T : E → F with
∥T∥ ∥T−1∥ ≤ C .
We say that X is finitely crudely representable into Y .

The “local” properties of Banach spaces are stable under coarse Lipschitz
embeddings.

The Ribe program (initiated by Bourgain and Lindenstrauss)
1) Characterize the local properties of Banach spaces in metric terms.
2) Do some well known phenomenons from the local linear theory of
Banach spaces extend to the setting of metric spaces ?

Examples : type, cotype, super-reflexivity, UMD...



The Kalton program.
• In the last 25 years the “asymptotic properties” of Banach spaces have
provided many linear properties that are invariant under ∼

L
, ∼
CL

, ↪→
CL

and even

↪→
c

or ↪→
u

. This program was initiated by many powerful results due to Nigel
Kalton, sometimes with coauthors.
• Very vaguely speaking, asymptotic properties of Banach spaces are
properties related to the structure of finite codimensional spaces, such as
properties of weakly null sequences or, more importantly, weakly null trees.
• The main tools used in these results are :
1) Hamming graphs for the study of the stability of asymptotic uniform
smoothness under coarse or coarse-Lipschitz embeddings.
2) Hyperbolic trees, coarse-Lipschitz embeddings, property (β) of Rolewicz.
3) The approximate midpoints principle for the study of the stability of
asymptotic uniform convexity under coarse-Lipschitz embeddings.
4) Kalton’s interlacing graphs in relation with coarse universality and also
stability of weak∗ asymptotic uniform convexity.
5) The Gorelik Principle for the study of the stability of asymptotic uniform
smoothness under Lipschitz or coarse Lipschitz equivalences.
6) Lipschitz free spaces.



CHAPTER I.

UNIVERSAL SPACES FOR SEPARABLE METRIC SPACES



Banach-Mazur (1930’s)
Every separable metric space isometrically embeds into C ([0, 1]).

Aharoni (1974)
Every separable metric space Lipschitz embeds into c0. It can be done with
distortion 2 and it is optimal.

Problem 1
Let X be a Banach space such that c0 ↪→

L
X . Is c0 isomorphic to a

subspace of X ? Is c0 a minimal universal space for ↪→
L

?

Note. Differentiability theorems imply that such an X cannot have the
Radon-Nikodým property (RNP in short). In particular it cannot be a
separable dual.

Problem 2
What can we say about a Banach space X such that c0 ↪→

c
X or c0 ↪→

CL
X ?

Can it have RNP ? Can it be a separable dual or even reflexive ?



Universal free spaces

Let N = (ZN ∩ c0, ∥ ∥∞). Then c0 ↪→
CL

N and c0 ↪→
CL

F(N).

Kalton (2004)
F(N) is a Schur space with the RNP (and universal for ↪→

CL
).

Let α ∈ (0, 1) and ωα(t) = max{tα, t}. If (M, d) is a metric space, so is
(M, ωα ◦ d). We denote Fα(M) = F(M, ωα ◦ d). Then c0 strongly embeds
(that is uniformly and coarse Lipschitz at the same time) into Fα(c0).

Kalton (2004) + Aliaga, Gartland, Petitjean, Procházka (2023)
Fα(c0) is a Schur space with RNP.

Consequence : c0 does not Lipschitz embed into F(N), nor into Fα(c0).

Problem 3
Do F(N) and Fα(c0) linearly embed into a separable dual ? Does every
separable free space with RNP linearly embed into a separable dual ?



Kalton’s interlacing metric

Let M be an infinite subset of N and k ∈ N. We denote

[M]k = {n = (n1, . . . , nk), n1 < · · · < nk ∈ M}, [M]<ω =
∞⋃
k=0

[M]k .

dk
I is the graph metric on [N]k such that dk

I (n,m) = 1 iff n ̸= m and
n1 ≤ m1 ≤ · · · ≤ nk ≤ mk or m1 ≤ n1 ≤ · · · ≤ mk ≤ nk .

Fact
(1) For n,m ∈ [N]k :
dk
I (n,m) = max

{∣∣♯(n ∩ S)− ♯(m ∩ S)
∣∣, S segment of N

}
.

We use this formula to extend dI to [N]<ω.

(2) Let (sn) be the summing basis of c0 (sn =
∑n

i=1 ei ) and define
f (n1, . . . , nk) =

∑k
i=1 sni . Then

1
2
dI (n,m) ≤ ∥f (n)− f (m)∥∞ ≤ dI (n,m).



Property Qp

Definition
Let p ∈ (1,∞]. A Banach space X has property Qp if there exists C ≥ 1
such that for any k ∈ N and any f : ([N]k , dI ) → X Lipschitz,
there exists M ∈ [N]ω so that diam (f ([M]k)) ≤ Ck1/pLip(f ).
We denote Qp

X the infimum of those C ≥ 1.

Proposition
(i) For p ∈ (1,∞), Qp is stable under coarse Lipschitz embeddings.
(ii) Property Q∞ is stable under coarse embeddings. In particular, if a
Banach space X has Q∞, then c0 does not coarsely embed into X .

Proof (ii). Assume Q∞
Y = λ <∞ and g : X ↪→

c
Y .

Pick µ > 0 such that ρg (µ) ≥ λωg (1).
Let f : ([N]k , dI ) → X 1-Lipschitz. Then Lip(g ◦ f ) ≤ ωg (1).
Thus, there exists M ∈ [N]ω so that diam ((g ◦ f )([M]k)) ≤ λωg (1).
It follows that ρg (diam (f ([M]k))) ≤ ρg (µ), and diam (f ([M]k)) ≤ µ.
So Q∞

X ≤ µ.



Kalton (2007)
Let X be a reflexive Banach space. Then Q∞

X ≤ 2.

Proof. Let X a reflexive Banach space and f : ([Nk ], dI ) → X Lipschitz.
Fix U a non principal ultrafilter on N and define ∂f : [Nk−1], dI ) → X by

∂f (n1, . . . , nk−1) = w − lim
nk∈U

f (n1, . . . , nk−1, nk).

Note that Lip(∂f ) ≤ Lip(f ) and ∂k f ∈ X .

Lemma 1
Assume X = R and let ε > 0. Then there exists M ∈ [N]ω such that
|f (n)− ∂k f | ≤ ε, for all n ∈ [M]k .

Lemma 2
Let f : ([Nk ], dI ) → X and g : ([Nk ], dI ) → X ∗ bounded maps and define
f ⊗ g : [N]2k → R by
(f ⊗ g)(n1, . . . , n2k) = ⟨f (n2, . . . , n2k), g(n1, . . . , n2k−1)⟩.
Then ∂2(f ⊗ g) = ∂f ⊗ ∂g .... ∂2k(f ⊗ g) = ⟨∂k f , ∂kg⟩.



Lemma 3
Let f : ([N]k , dI ) → X be a 1-Lipschitz map and ε > 0. Then, there exists
an infinite subset M ∈ [N]ω such that

∀n ∈ [M]k ∥f (n)∥ ≤ ∥∂k f ∥+ Lip(f ) + ε.

Proof. For all n ∈ [N]k , there exists g(n) ∈ SX∗ such that
⟨f (n), g(n)⟩ = ∥f (n)∥. Then, by Lemma 2,

|∂2k(f ⊗ g)| = |⟨∂k f , ∂kg⟩| ≤ ∥∂k f ∥.

By Lemma 1, there is an infinite subset M0 of N such that

∀p ∈ [M0]
2k : |(f ⊗ g)(p)| ≤ ∥∂k f ∥+ ε.

Then write M0 = {n1 < m1 < .. < ni < mi < ..} and set
M = {n1 < n2 < .. < ni < ..}. Thus for all n = (ni1 , .., nik ) ∈ [M]k ,

∥f (n)∥ = ⟨f (n), g(n)⟩ ≤ |⟨f (mi1 , ..,mik ), g(ni1 , .., nik )⟩|+ Lip(f )

≤ ∥∂k f ∥+ ε+ Lip(f ).

Proof of Theorem. Apply Lemma 3 to (f − ∂k f ).



Kalton (2007)
If c0 coarsely (or uniformly) embeds into a Banach space X , then there
exists k ∈ N such that X (n) is non separable.

Definition. A Banach space is said to be stable if for all (xn), (yn)
bounded sequences in X and for U non principal ultrafilter on N,

lim
n∈U

lim
m∈U

∥xn − ym∥ = lim
m∈U

lim
n∈U

∥xn − ym∥.

Lp for p ∈ [1,∞) is stable (Krivine and Maurey).

Kalton(2007)
(1) If X is stable, then Q∞

X ≤ 2 (easy).
(2) If X is stable, then X strongly embeds into a reflexive Banach space.

Problem 4
(4.1) Does any Banach space with Q∞ coarsely embed into a reflexive
Banach space ?
(4.2) Does any reflexive Banach space coarsely embed into a stable Banach
space ?



More open problems
(1) Does c0 coarsely or coarse Lipschitz embed into a separable dual ? A
separable bidual ?
(2) Does there exist n ≥ 1 such that X (n) separable implies that c0 does
not coarsely (or coarse Lipschitz) embed into X ?

Funny example
Let J be the James space. Then
(1) (Kalton 2007). The spaces J and J ∗ fail to have property Q∞.
(2) (Petitjean, Procházka, L. (2020). The family of metric spaces
([N]k , dI )k∈N does not equi-coarsely embed into J or J ∗.

Next problem.

To what extent can we equi-Lipschitz embed the family ([N]k , dI )k∈N into
a separable dual ?



CHAPTER II.

SOME ASYMPTOTIC PROPERTIES OF BANACH SPACES



Moduli of asymptotic uniform smoothness and convexity.

Let (X , ∥ ∥) be a Banach space and t ∈ [0,∞).

ρX (t) = sup
x∈SX

inf
dim(X/Y )<∞

sup
y∈SY

∥x + ty∥ − 1.

δX (t) = inf
x∈SX

sup
dim(X/Y )<∞

inf
y∈SY

∥x + ty∥ − 1.

More concretely. ρX (t) is the best (smallest) constant such that for all
x ∈ SX and all (xα)α weakly null net in BX , lim sup ∥x + txα∥ ≤ 1+ ρX (t).

• The norm is asymptotically uniformly smooth (AUS) if limt→0
ρX (t)

t = 0.
• It is asymptotically uniformly convex (AUC) if δX (t) > 0, for all t > 0.
• The norm of X is p-AUS if : ∃C > 0 ∀t > 0 ρX (t) ≤ Ctp (1 < p <∞).
• The norm is asymptotically uniformly flat (AUF) if there exists t0 > 0
such that ρX (t) = 0, for all t ≤ t0.
• The norm of X is q-AUC if : ∃C > 0 ∀t ∈ (0, 1] δX (t) ≥ Ctq.
Examples. let (Fn)n be a sequence of finite dimensional normed spaces.
Then (

∑∞
n=1 Fn)ℓp is p-AUS and p-AUC, and (

∑∞
n=1 Fn)c0 is AUF.



Duality between asymptotic smoothness and convexity

Let (X , ∥ ∥) be a Banach space and t ∈ [0,∞).

δ
∗
X (t) = inf

x∗∈SX∗
sup
Y∈E

inf
y∗∈SY

∥x∗ + ty∗∥ − 1,

where E is the set of weak∗-closed finite codimensional subspaces of X ∗.
Concretely. δ∗X (t) is the best (largest) constant such that for all x∗ ∈ SX

and all (x∗α)α weak∗ null net in SX∗ , lim inf ∥x∗ + tx∗α∥ ≥ 1 + δ
∗
X (t).

• The norm of X ∗ is weak∗ asymptotically uniformly convex (AUC∗) if
δ
∗
X (t) > 0, for all t > 0.
• The norm of X ∗ is q-AUC∗ if : ∃C > 0 ∀t ∈ (0, 1] δX (t) ≥ Ctq.

Proposition
Let X be a Banach space, p ∈ (1,∞] and q be the conjugate of p. Then
(i) ∥ ∥X is AUS iff ∥ ∥X∗ is AUC∗.
(ii) ∥ ∥X is p-AUS iff ∥ ∥X∗ is q-AUC∗.



Two useful results.

Notation. For a Banach space X , we denote X ∈ ⟨P⟩ if X admits an
equivalent norm with property P .

Johnson, Lindenstrauss, Preiss, Schechtman (2002)
Let p ∈ (1,∞) and X be a Banach space. Then TFAE
(i) X is separable reflexive and X ∈ ⟨p − AUS⟩ ∩ ⟨p − AUC ⟩.
(ii) There exists a sequence of finite dimensional normed spaces (Fn)n such
that X is isomorphic to a subspace of (

∑∞
n=1 Fn)ℓp .

Godefroy, Kalton, L. (2000)
Let X be a Banach space. Then TFAE
(i) X is separable and X ∈ ⟨AUF ⟩.
(ii) X is isomorphic to a subspace of c0.



The Szlenk index.

Let X be a Banach space and K be a weak∗ compact subset of X ∗. For
each ε > 0, define

sε(K ) = {x∗ ∈ K , ∀V w∗ − neighborhood of x∗, diam (V ∩ K ) ≥ ε}.

Given an ordinal α, sαε (K ) is defined inductively by letting s0
ε (K ) = sε(K ),

sα+1
ε (K ) = sε(s

α
ε (K )) and sαε (K ) = ∩β<αs

β
ε (K ) if α is a limit ordinal.

We then define Sz(X , ε) as the least ordinal α so that sαε (BX∗) = ∅, if such
ordinal exists, and Sz(X , ε) = ∞ otherwise. The Szlenk index of X is
defined as

Sz(X ) = sup
ε>0

Sz(X , ε).

Proposition
Let X be a separable Banach space. Then TFAE
(i) X ∗ is separable.
(ii) Sz(X ) < ω1 (where ω1 is the first uncountable ordinal).
(iii) Id : (BX∗ ,w∗) → (BX∗ , ∥ ∥) is of first Baire class.

Sz(X ) can be seen as a measure of how close to be non separable X ∗ is.



Proposition
(1) Let X be an AUS Banach space. Then Sz(X ) ≤ ω (where ω is the first
uncountable ordinal). More precisely, there exists C ≥ 1 (universal) so that
Sz(X , ε) ≤ C (δ

∗
X (ε/C ))−1.

(2) Let p ∈ (1,∞] and q be the conjugate of p. If X is p-AUS then, there
exists C ≥ 1 such that

∑n
i=1 ε

q
i ≤ C , whenever sε1 . . . sεn(BX∗) ̸= ∅.

We say that X has a q-summable Szlenk index.

Proof.

Knaust, Odell, Schlumprecht (1999)
Let X be a separable Banach space such that Sz(X ) ≤ ω. Then there
exists p ∈ (1,∞] such that X ∈ ⟨p − AUS⟩.

M. Raja (2010) : extension to the non separable setting.
Godefroy, Kalton, L. (2001) : Let X be a separable Banach space. If
Sz(X , ε) ≤ Cε−q, then X ∈ ⟨r − AUS⟩, for all r ∈ (1, p).



Asymptotic two players games

Notation. WX denotes the set of all weak open neighborhood of 0 in the
Banach space X and cof (X ) the set of all its closed finite codimensional
subspaces. Fix 1 < p ≤ ∞, c ≥ 1 and n ∈ N.
The T (c , p) game. It is a game with infinitely many rounds.
Round 1 : PI chooses U1 ∈ Wx , PII chooses x1 ∈ U1 ∩ BX .
Round 2 : PI chooses U2 ∈ Wx , PII chooses x2 ∈ U2 ∩ BX ... and so on...
PI wins if : ∀a ∈ c00 ∥

∑∞
i=1 aixi∥ ≤ c∥a∥p.

Definition
tp(X ) = inf{c > 0, PI has a winning strategy in T (c , p)}
X ∈ Tp if tp(X ) <∞.

The A(c , p, n) game. Same game with n rounds.
PI wins if : ∀a ∈ ℓnp ∥

∑n
i=1 aixi∥ ≤ c∥a∥p.

Definition
ap(X ) = supn∈N inf{c > 0, PI has a winning strategy in A(c , p, n)}
X ∈ Ap if ap(X ) <∞.



The N(c , p, n) game. Same game with n rounds.
PI wins if : ∥

∑n
i=1 xi∥ ≤ cn1/p.

Definition
np(X ) = supn∈N inf{c > 0, PI has a winning strategy in N(c , p, n)}
X ∈ Np if np(X ) <∞.

Remark. These games are determined.

Weakly null trees

Notation. LetD be a set, n ∈ N.
D≤n = {∅} ∪

⋃n
i=1 D

i , D<ω =
⋃∞

n=0 D
≤n, Dω = DN.

For s = (s1, . . . , sn) and t = (t1, . . . , tm), s ⌢ t = (s1, . . . , sn, t1, . . . , tm).
|s| is the length of s and for i ≤ |s|, s|i = (s1, . . . , si ). Finally s ⪯ t if t
extends s.
Definition. Let X be a Banach space and D be a weak neighborhood basis
of 0 in X . Then (xt)t∈D<ω is a weakly null tree in X if for all t ∈ D<ω,
(xt⌢(U))U∈D is a weakly null net, where D is directed by reverse inclusion.
If X ∗ is separable, we can take D = N.



Proposition
A Banach space X belongs to Tp if and only if there exists c > 0 such that
for any weak neighborhood basis of 0 in X and any (xt)t∈D<ω weakly null
tree in BX , there exists τ ∈ Dω such that

∀a ∈ c00
∥∥ ∞∑

i=1

aixτ|i

∥∥ ≤ c∥a∥p.

There are similar statements for Ap and Np.

Inclusions

Theorem (R. Causey)
Let 1 < p <∞. Then Tp ⊊ Ap ⊊ Np ⊊

⋂
1<r<p Tr .

For p = ∞. T∞ ⊊ A∞ = N∞ ⊊
⋂

1<r<∞ Tr .

Fundamental example. The Tsirelson space T ∗ belongs to A∞ \ T∞.
Note. The class A∞ = N∞ is the class of asymptotic-c0 spaces.



Characterizations of Tp, Ap

Causey (2018)
Let X be a Banach space, p ∈ (1,∞], and q be its conjugate. Then TFAE
(i) X ∈ Tp.
(ii) X ∈ ⟨p − AUS⟩.
(iii) X admits an equivalent norm whose dual norm is q-AUC∗.

Causey, Fovelle, L. (2023)
Let X be a Banach space, p ∈ (1,∞], and q be its conjugate. Then TFAE
(i) X ∈ Ap.
(ii) There exists M ≥ 1 and c > 0 such that for all θ ∈ (0, 1], there exists a
norm | | on X satisfying

M−1| | ≤ ∥ ∥X ≤ M| | and ∀t ≥ θ, ρ| |(t) ≤ ctp.

(iii) X has a q-summable Szlenk index.

Note. If Sz(X ) ≤ ω, then there exists q ∈ [1,∞) and C > 0 such that
Sz(X , ε) ≤ Cε−q. Thus, for all r < p (conjugate of q), X ∈ ⟨r − AUS⟩.



CHAPTER III.

SZLENK INDEX AND INTERLACING GRAPHS



Back to Kalton’s interlacing graphs and Property Qp

Braga, Petitjean, Procházka, L. (2023)
Let p ∈ (1,∞] and assume that X is a Banach space with Ap. Then X ∗

has property Qp.

Corollary

If the family ([N]k , dI )k equi-Lipschitz embeds into X ∗. Then Sz(X ) ≥ ω2.

Comments : It is a new obstruction to coarse Lipschitz embeddings in
some AUC Banach spaces (AUC∗ duals in fact) which is an alternative to
the approximate midpoint principle. It can give more precise quantitative
information, but only in the non reflexive setting.

• Duals of spaces in A∞ provide new examples of spaces with Q∞. There
are non reflexive separable spaces in A∞ \ T∞.

Problem 5
Does any dual of an asymptotic-c0 space coarsely embed into a reflexive
Banach space ?



Proof

Assume f : ([N]k , dI ) → X ∗ is 1-Lipschitz.
By passing to an infinite subset of N, we may assume that there exists a
weak∗-null tree (x∗(m))m∈[N]≤k in X ∗ such that
(i) For all n ∈ [N]k , f (n) =

∑
m⪯n x

∗(m).
(ii) For all m ∈ [N]≤k \ {∅}, ∥x∗m∥ ≤ Lip(f ) ≤ 1.

f (n1, . . . , nk) →
nk→∞

∂f (n1, . . . , nk−1) →
nk−1→∞

∂2f (n1, . . . , nk−2)..

Then set x∗(n1, . . . , nk) = f (n1, . . . , nk)− ∂f (n1, . . . , nk−1), . . . ,
x∗(n1) = ∂k−1f (n1)− ∂k f .
By passing to a further infinite subset of N, we “may assume” that
(a) ∀i ≤ k ∃εi ∈ [0, 1] ∀m ∈ [N]i ∥x(m)∥ ≈ εi (Ramsey).
(b) ∥x∗(2n1, . . . , 2ni )− x∗(2n1 + 1, . . . , 2ni + 1)∥ ≳ εi .
Set now, for n = (n1, . . . , ni ), with i ≤ k :

y∗(n) = x∗(2n1, . . . , 2ni )− x∗(2n1 + 1, . . . , 2ni + 1)

and z∗(n) =
∑
m⪯n

y∗(m).

Then (z∗(n))n∈[N]≤k is a weak∗-continuous tree (y∗∅ = z∗∅ = 0).



Most importantly (z∗(n))n∈[N]≤k ⊂ BX∗ . Indeed, for n ∈ [N]k ,

∥z∗(n)∥ = ∥f (2n1, . . . , 2nk)− f (2n1 + 1, . . . , 2nk + 1)∥ ≤ Lip (f ) ≤ 1.

The weak∗ null tree (z∗(n))n∈[N]≤k testifies that sε1 . . . sεk (BX∗) ̸= ∅.
But X ∈ Ap and thus has a q-summable Szlenk index (q conjugate of p).
So there exists C ≥ 1 (depending on X ) such that

∑k
i=1 ε

q
i ≤ C .

Applying Hölder, we get
∑k

i=1 εi ≤ C 1/qk1/p and, for all n,m ∈ [N]k :

∥f (n)− f (m)∥ = ∥
∑

∅≺v⪯n

x∗(v)−
∑

∅≺u⪯m

x∗(u)∥ ≤ 2C 1/qk1/p.

Application
Let p ∈ (1,∞). The James space Jp has Qr if and only if r ≤ q
(conjugate of p) and it has HCs if and only if s ≤ p.
In particular Jp does not coarse Lipschitz embed into Jp′ , for p ̸= p′.

Comments. It is customary, in order to use AUC as an obstruction to
coarse Lipschitz embeddings, to apply the approximate midpoints principle.
Concentration properties say more : they give information on the so-called
compression exponents.



Optimality : Lipschitz free spaces again !

BLPP (2023)

There exists a separable Banach space X such that Sz(X ) = ω2 and
M = ([N]<ω, dI ) Lipschitz embeds into X ∗.

Idea of proof. We will show that F(M) ≃ Y ⊆ X ∗, with Sz(X ) = ω2.

• Let (sn) be the summing basis of c0. Define f (n1, . . . , nk) =
∑k

i=1 sni .
Let Mk = f ([N]≤k) (which is 2-Lipschitz equivalent to ([N]≤k , dI )).
Finally, set Pk to be the weak∗-closure of Mk in ℓ∞.

• Pk =
{∑j

i=1 sni + ℓ1 : j , ℓ ∈ N ∪ {0}, j + ℓ ≤ k , n1 < . . . < nj ∈ N
}

.

• Pk is bounded, countable, uniformly discrete and w∗-compact. Then
(Garcia-Lirola, Petitjean, Procházka, Rueda-Zoca - 2018), F(Pk) is
isometric to X ∗

k , where Xk is the space Lip0(Pk) ∩ Cw∗(Pk) equipped with
the Lipschitz norm.

• We appeal now to another paper of Kalton (2004) to say that F(M)
linearly embeds into (

∑
k F(M2k ))ℓ1 , and therefore in (

∑
k F(P2k ))ℓ1 ,

which is the dual of X = (
∑

k X2k )c0 .



• Since Pk is bounded and uniformly discrete, Xk is isomorphic to a
subspace of (Cw∗(Pk), ∥ ∥∞). The Cantor-Bendixon index of (Pk ,w

∗) is
finite (exercise). Thus Xk is isomorphic to a subspace of c0
(Bessaga-Pełczyński).

• We conclude that Sz(Xk) = ω and therefore that Sz(X ) ≤ ω2.

Embeddings with extra assumptions.

Kalton
If ([N]k , dI )k equi-coarsely embed into a separable Banach lattice X , then
X contains a subspace isomorphic to c0.

BLPP
If c0 coarse Lipschitz embeds into a dual space X ∗ with coarse Lipschitz
distortion strictly less than 3

2 , then X contains an isomorphic copy of ℓ1.

BLPP
Neither c0 nor L1 can be coarsely embedded into a separable dual Banach
space by a map that is weak-to-weak∗ sequentially continuous.



CHAPTER IV.

THE GORELIK PRINCIPLE

AND ASYMPTOTIC UNIFORM SMOOTHNESS



Gorelik (1994) ; Johnson, Lindenstrauss, Schechtman (1996)
Let p ∈ (1,∞). If a Banach space X is uniformly homeomorphic to ℓp,
then it is linearly isomorphic to ℓp.

Proposition 1
Let X be a Banach space, X0 ∈ cof (X ) and 0 < c < d . Then there exists
a compact subset A of dBX such that for all Φ : A → X continuous so that
∥Φ(a)− a∥ ≤ c for all a ∈ A, we have : Φ(A) ∩ X0 ̸= ∅.

Proof. Let Q : X → X/X0 quotient map. There exists L : X/X0 → X
continuous st QL = IdX/Xo

and A = L(cBX/X0) ⊂ dBX (Bartle-Grave).
dim(X/X0) <∞, so A is compact and let Φ : A → X as in the statement.
For y ∈ cBX/X0 , set g(y) = y − (Q ◦ ϕ ◦ L)(y). Then, for all y ∈ cBX/X0

∥g(y)∥ = ∥(Q ◦ L)(y)− (Q ◦ ϕ ◦ L)(y)∥ ≤ ∥L(y)− (ϕ ◦ L)(y)∥ ≤ c.

So g : cBX/X0 → cBX/X0 being continuous, it follows from Brouwer’s
theorem, that there exists y ∈ BX/X0 such that g(y) = y , i.e.
Φ(L(y)) ∈ X0.



The Gorelik Principle
Let X ,Y Banach spaces ; f : X → Y homeomorphism such that
Lip(f −1) < M. Then, for any X0 ∈ cof (X ) and any λ > 0, there exists a
compact subset K of Y so that

λBY ⊂ K + f (2MλBX0).

Proof. Let c = λLip(f −1) < d = λM and A ⊂ dBX be given by Prop. 1.
Fix y ∈ λBY and define Φ : A → X by Φ(a) = f −1(y + f (a)).
Then Φ is continuous and ∥Φ(a)− a∥ ≤ λLip(f −1) = c , a ∈ A.
By Prop. 1, there exists a ∈ A such that f −1(y + f (a)) ∈ X0.
But in fact, f −1(y + f (a)) ∈ 2λMBX0 .
Therefore, y ∈ −f (a) + f (2λMBX0). Set K = −f (A), compact in Y , to
conclude the proof.

Comment. A weak∗ null sequence (y∗n )n in Y ∗ is normed by f (2MBX0)
and therefore by f (xn) with (xn) weakly null in X (assuming X ∗,Y ∗

separable)... almost as well as it is normed by a weakly null sequence in Y .
This intuitively explains why we will deduce results on the preservation of
AUC∗ (or equivalently AUS).



Definition.
Let X ,Y be Banach spaces. A map f : X → Y is a
coarse Lipschitz equivalence if f is coarse Lipschitz and there exist
g : Y → X coarse Lipschitz and C > 0 such that

∀x ∈ X ∥g ◦ f (x)− x∥ ≤ C and ∀y ∈ X ∥f ◦ g(y)− y∥ ≤ C .

We denote X
CL∼ Y .

Note. A uniform homeomorphism is a coarse Lipschitz equivalence, but
there are Banach spaces that are coarse Lipschitz equivalent but not
uniformly homeomorphic (Kalton).

A variant of the Gorelik Principle

Let X ,Y Banach spaces such that X CL∼ Y . Then there exist C > 0, M ≥ 1
and λ0 > 0 such that for all X0 ∈ cof (X ) and all λ ≥ λ0 there exists a
compact subset K of Y such that

λBY ⊂ K + CBY + f (2λMBX0).



The main applications

Godefroy, Kalton, L. (2000-2001)
Let p ∈ (1,∞]. Then the class Tp is stable under Lipschitz equivalences.

Corollary (GKL)

Let X be a Banach space. If X L∼ c0, then X ≃ c0.

Proof. Let X L∼ c0. Then X ∈ T∞ and is separable. Thus X is isomorphic
to a subspace of c0. By a result of Heinrich and Mankiewicz it is also a L∞

space. Finally, a L∞ infinite dimensional subspace of c0 is isomorphic to c0
(Johnson-Zippin).

GKL
Let p ∈ (1,∞]. Then

⋂
1<r<p Tr is stable under uniform homeomorphisms.

Kalton (2013)
Let p ∈ (1,∞). The class Tp is not stable under uniform homeomorphisms.



Causey, Fovelle, L. (2023)
Let p ∈ (1,∞]. Then the classes Ap and Np are stable under coarse
Lipschitz equivalences.

Problem 6
Is T∞ stable under coarse Lipschitz equivalences ?
Does X ∼

CL
c0 imply X ≃ c0 ?



Proof of the stability of T∞ under Lipschitz equivalences

Let X ,Y Banach spaces and assume that f : X
L∼ Y and X ∈ T∞. We

may assume that X is separable and thus that X ⊆ c0 ; that Lip(f ) = 1
and Lip(f −1) < M. We will build a an equivalent norm on Y whose dual
norm is 1-AUC∗ by letting

|y∗| = sup
{⟨y∗, f (x)− f (x ′)⟩

∥x − x ′∥
, x ̸= x ′ ∈ X

}
.

Clearly | | is equivalent to ∥ ∥Y ∗ and w∗-l.s.c., thus the dual of a equivalent
norm on Y .

• Let y∗ ∈ Y ∗, (y∗k )k ⊂ Y ∗ such that y∗k
w∗
→ 0 and ∥y∗k ∥ ≥ t. We want to

prove that lim inf |y∗ + y∗k | ≥ |y∗|+ ct, for some c > 0.
Pick x ̸= x ′ ∈ X so that ⟨y∗, f (x)− f (x ′)⟩ ≈ ∥x − x ′∥ |y∗|.
We may assume x ′ = −x and f (x ′) = −f (x). So ⟨y∗, f (x)⟩ ≈ ∥x∥ |y∗|.
Since X ⊆ c0, there exists X0 ∈ cof (X ) such that

∀z ∈ ∥x∥BX0 , ∥x + z∥ = ∥x − z∥ ≈ ∥x∥ (1)



• By the Gorelik Principle, there exists a compact K ⊂ Y such that

∥x∥
2M

BY ⊂ K + f (∥x∥BX0).

Since y∗k → 0 uniformly on K , we can find (zk)k ⊂ ∥x∥BX0 so that

lim inf
k

⟨y∗k ,−f (zk)⟩ ≥
∥x∥t
2M

(2)

• Note that it follows from (1) that

⟨y∗, f (zk) + f (x)⟩ = ⟨y∗, f (zk)− f (−x)⟩ ≤ ∥zk − x∥ |y∗| ≲ ∥x∥ |y∗|.

So, ⟨y∗, f (zk)⟩ ≲ 0. Since y∗k
w∗
→ 0 and by (2) :

lim inf
k

⟨y∗ + y∗k , f (zk) + f (x)⟩ ≳ ∥x∥ |y∗|+ ∥x∥t
2M

• Finally use again that ∥x − zk∥ ≈ ∥x∥ and the definition of | | to get

lim inf
k

|y∗ + y∗k | ≳ |y∗|+ t

2M
.



General statements on the preservation of AUS under equivalences

Godefroy, Kalton, L. (2001)
Let X and Y be Banach spaces such that there exists a Lipschitz
equivalence f from X to Y . Then there exist a a universal constant K > 0
and a constant M > 0 (depending on f ) so that there exists a norm | | on
Y satisfying

∀y ∈ Y , ∥y∥Y ≤ |y | ≤ M∥y∥Y and ∀t ∈ [0, 1], ρ| |(K
−1M−2t) ≤ ρX (t).

Dalet, L. (2017)
Let X and Y be Banach spaces such that there exists a coarse Lipschitz
equivalence f from X to Y . Then there exist a a universal constant K > 0
and a constant M > 0 (depending on f ) so that for any ε > 0, there exists
a norm | | on Y satisfying

∀y ∈ Y , ∥y∥Y ≤ |y | ≤ M∥y∥Y and

∀t ∈ [0, 1], ρ| |(K
−1M−2t) ≤ ρX (t) + ε.



Bates, Johnson, Lindenstrauss, Preiss, Schechtman (1999)
Being Asplund (and in particular having a separable dual) is stable under
Lipschitz equivalences (even Lipschitz quotients).

Dutrieux (2001)
There exists ψ : (0, ω1) → (0, ω1) so that Sz(Y ) ≤ ψ(Sz(X )), whenever
X ∗ separable and X

L∼ Y .

Problem 7
ψ = Id ? Is the Szlenk index preserved by Lipschitz equivalences ?

We know ψ(ω) = ω. This would imply a positive answer to the following :

Problem 8
Let K , L be compact metric spaces.
Does C (K )

L∼ C (L) imply C (K ) ≃ C (L) ?



Warning. It is not true for uniform homeomorphisms !

Ribe (1984)
Let (pn)n ⊂ (1,∞) be a decreasing sequence so that limn pn = 1 and let
X = (

∑∞
n=1 ℓpn)ℓ2 . Then X is uniformly homeomorphic to Y = X ⊕ ℓ1.

Remarks. X is reflexive, while Y is not Asplund.
Quantitatively : Sz(X ) = ω2, while Sz(Y ) = ∞.



THANK YOU


