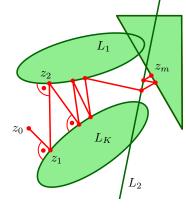
# Convergence of remote projections onto convex sets

#### Eva Kopecká

University of Innsbruck Austria

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# DO THE ITERATES OF PROJECTIONS CONVERGE?



K fixed, e.g. K = 5 $C_1, C_2, \ldots, C_K \subset \mathbb{R}^d$  or  $\ell_2$  closed convex sets

 $k_1, k_2, \dots \in \{1, 2, \dots, K\}$  be arbitrary  $z_n = P_{k_n} z_{n-1}$  sequence of projections

Do the iterates converge to a point in the intersection  $A = \bigcap C_k$ , if it is non-empty?



## Convex sets



H Hilbert space closed and convex  $C_1, C_2, \ldots, C_K \subset H$  $\bigcap C_i \neq \emptyset$ 

 $z_n = P_{k_n} z_{n-1}$  iterates of the nearest point projections of a point z

If  $H = \mathbb{R}^d$  then  $\{z_n\}$  converges. [Dye, Kuczumow, Lin, Reich '96]

There exist 2 closed and convex sets  $C, D \subset \ell_2$  with  $0 \in C \cap D$ , and a sequence  $\{z_n\}$  of iterates of nearest point projections on these sets which does NOT converge in norm. [Hundal '04]

There exist 3 closed subspaces  $L_1, L_2, L_3 \subset \ell_2$  with the following property. For every  $0 \neq z_0 \in H$  there is a sequence  $k_1, k_2, \dots \in \{1, 2, 3\}$  so that the sequence of iterates defined by  $z_n = P_{k_n} z_{n-1}$  does not converge in norm. [Eva Kopecká, Vladimír Müller, Adam Paszkiewicz, '14,'17] remotest projections onto symmetric convex sets converge

Let all  $C_{\alpha}$ ,  $\alpha \in \Omega$ , be closed, convex, and symmetric subsets of a Hilbert space. (Hence  $0 \in \bigcap C_{\alpha}$ .) Then the sequence of remotest projections  $z_n = P_{\alpha_n} z_{n-1}$  where  $\operatorname{dist}(z_n, C_{\alpha_n}) = \max_{\alpha \in \Omega} \operatorname{dist}(z_n, C_{\alpha})$ converges in norm for any starting element  $z_0 \in H$ . [Borodin, Kopecká '23]

remotest projections onto symmetric convex sets converge

Let all  $C_{\alpha}$ ,  $\alpha \in \Omega$ , be closed, convex, and symmetric subsets of a Hilbert space. (Hence  $0 \in \bigcap C_{\alpha}$ .) Then the sequence of remotest projections  $z_n = P_{\alpha_n} z_{n-1}$  where  $\operatorname{dist}(z_n, C_{\alpha_n}) = \max_{\alpha \in \Omega} \operatorname{dist}(z_n, C_{\alpha})$ converges in norm for any starting element  $z_0 \in H$ . [Borodin, Kopecká '23]

relaxing symmetry by uniform almost symmetry:  $\forall \alpha : x \in C_{\alpha} \Rightarrow -\frac{1}{10}x \in C_{\alpha}$ Here we WLOG assume  $0 \in C_{\alpha} \subset B(0,5)$  for all  $\alpha$ ;  $\frac{1}{10}$  can be replaced by a  $\delta \in (0,1]$ .

relaxing remoteness: choose  $\alpha_n$  so that  $\operatorname{dist}(z_n, C_{\alpha_n}) \geq \frac{1}{2} \max_{\alpha \in \Omega} \operatorname{dist}(z_n, C_{\alpha})$ 

More generally, take  $t_n \in (0, 1]$  instead of  $\frac{1}{2}$ satisfying the condition  $\forall (a_i) \in \ell_2$  with  $a_i \ge 0$ :  $\liminf_{m \to \infty} \frac{a_m}{t_m} \sum_{i=1}^m a_i = 0$ invented by [Temlyakov '02] for all  $C_{\alpha}$  hyperplanes; best possible.

## degrees of symmetry

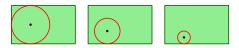
bounded, closed and convex  $C, C_{\alpha} \subset H$  Hilbert space *C* is symmetric:  $x \in C \Rightarrow -x \in C$ 



C is somewhat symmetric:  $\forall x \in C \exists \delta_x \in (0,1]: -\delta_x x \in C$ 



*C* is almost symmetric:  $\exists \delta \in (0,1] : x \in C \Rightarrow -\delta x \in C$ *C* is somewhat symmetric  $\Leftrightarrow C$  is almost symmetric



The family  $C_{\alpha}$ ,  $\alpha \in \Omega$ , is uniformly almost symmetric:  $\exists \delta \in (0,1] \forall \alpha : x \in C_{\alpha} \Rightarrow -\delta x \in C_{\alpha}$ 

#### somewhat symmetric $\Leftrightarrow$ almost symmetric

bounded, closed and convex  $C \subset H$  Hilbert space C is somewhat symmetric:  $\forall x \in C \exists \delta_x \in (0, 1] : -\delta_x x \in C$ 

- *C* is almost symmetric:  $\exists \delta \in (0, 1]$  :  $x \in C \Rightarrow -\delta x \in C$
- C is somewhat symmetric  $\Leftrightarrow$  C is almost symmetric  $\Leftarrow$ : clear

Proof  $1 \Rightarrow$ : Suppose  $\inf_{x \in C} \delta_x = 0$ . Choose  $x_n \in C$  having  $\delta_{x_n} < 1/3^n$ . Then  $x = \sum_{n=1}^{\infty} \frac{x_n}{2^n} \in C$ , hence  $\delta_x > 0$  implying after some computations  $\delta_{x_k} > 1/3^k$  for large k's - a contradiction.

Proof 2  $\Rightarrow$ : (Baire category thm) Both sets  $C \cap (-C)$  and  $\operatorname{conv} (C \cup (-C))$  generate norms on span C in which span C is a Banach space. These norms are equivalent in view of the open mapping theorem. Hence  $\inf_{x \in C} \delta_x > 0$ .

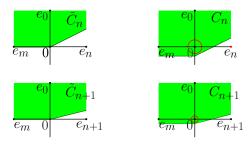
#### UNIFORM almost symmetry needed

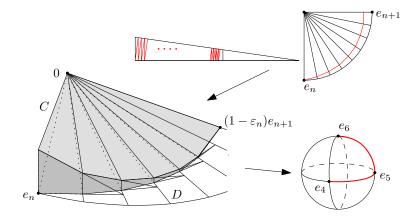
There are  $C_n$ ,  $n \in \mathbb{N}$ , closed, convex, and (NOT uniformly!!) almost symmetric subsets of  $\ell_2$  and a sequence  $\{z_n\}$  of remotest projections onto these sets which does NOT converge in norm.

$$e_0, e_1, e_2, \dots$$
 ON basis of  $\ell_2, D = e_0^{\perp}, a_n \searrow 0, \delta_n \downarrow 0, j_n \nearrow \infty$   
 $\phi_n : D \rightarrow [0, \infty)$  convex, continuous, positively homogeneous s.t.  
 $\phi_n(e_n) = a_n, \phi_n(-e_n) = \phi_n(\pm e_m) = 0$  if  $m \neq n$   
 $\tilde{C}_n$  is the epigraph of  $\phi_n, C = \bigcap \tilde{C}_n, C_n$  is the epigraph of  $\phi_n - \delta_n$   
 $|(P_{\tilde{C}_n}P_D))^{j_n}e_n - e_{n+1}| < 5^{-n}$  and  $|(P_{C_n}P_D)^{j_n}e_n - e_{n+1}| < 5^{-n}$ 

(日)、

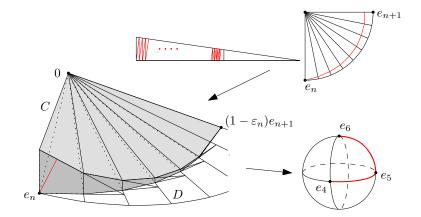
э





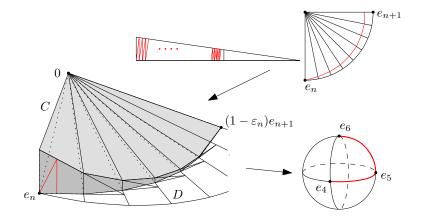
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э



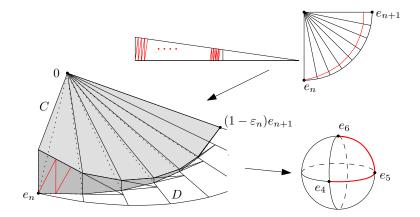
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э



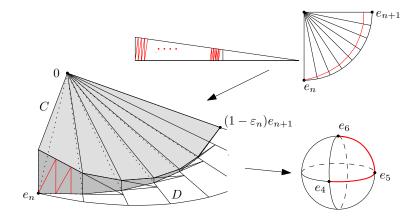
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э



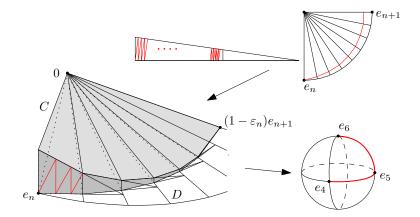
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э



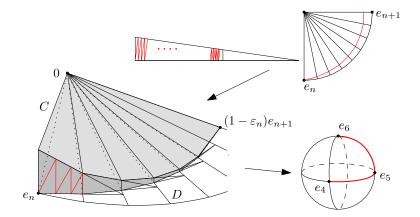
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э



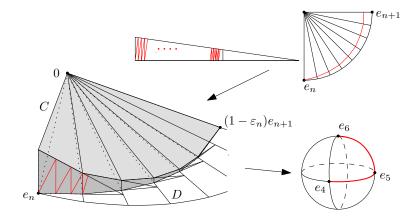
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э



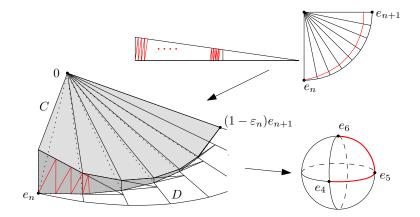
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э



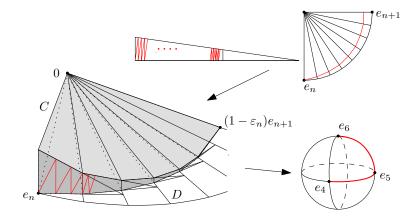
In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

э

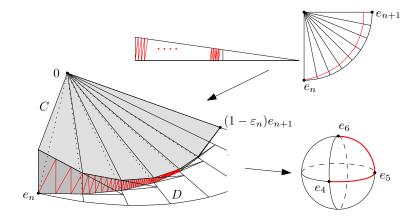


In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .

3



In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .



In  $\ell_2$  there exist a closed convex set C, a hyperplane D, with  $0 \in C \cap D$ , and a point z so that the iterates  $(P_C P_D)^n z$  do *not* converge in norm. The iterates approximately contain an ON sequence  $\{e_n\}$ .