On isometry groups on the space of converging sequences

Valentin Ferenczi

Universidade de São Paulo

Linear and non-linear analysis in Banach spaces Santander, July 20th, 2023 Supported by São Paulo Research Fundation - Fapesp, "Geometry of Banach Spaces" Project 2016/25574-8

Group actions

Throughout the talk, G is a fixed group.

A linear action $\lambda : G \curvearrowright Z$ of G on a Banach space Z, i.e. a group homomorphism

$$\lambda: G \to GL(Z) \subseteq B(Z)$$

will always be assumed bounded, i.e. $\sup_{g \in G} \|\lambda(g)\| < +\infty$.

Group actions

Throughout the talk, *G* is a fixed group.

A linear action $\lambda : G \curvearrowright Z$ of G on a Banach space Z, i.e. a group homomorphism

$$\lambda: G \to GL(Z) \subseteq B(Z)$$

will always be assumed bounded, i.e. $\sup_{g \in G} \|\lambda(g)\| < +\infty$.

Given λ as above, a subspace $X \subseteq Z$ is *G*-invariant if $\lambda(g)(X) = X, \forall g \in G$.

Definition

Fix $\lambda : G \curvearrowright Z$ as above, and a *G*-invariant subspace $X \subseteq Z$. Then *G* acts on *X*, by $u(g)x := \lambda(g)_{|X}x$ and on Y := Z/X, by $v(g)(z + X) := \lambda(g)z + X$.

Objective

Study relations between u, v, λ . In particular, given u, v, what are the possible λ 's (we call them compatible with u, v)?

Definition

Fix $\lambda : G \curvearrowright Z$ as above, and a *G*-invariant subspace $X \subseteq Z$. Then *G* acts on *X*, by $u(g)x := \lambda(g)_{|X}x$ and on Y := Z/X, by $v(g)(z + X) := \lambda(g)z + X$.

Objective

Study relations between u, v, λ . In particular, given u, v, what are the possible λ 's (we call them compatible with u, v)?

- Kalton "centralizers" (\geq 1979): G = units in a Banach lattice
- Pytlic-Szwarc, Ozawa, Pisier... (\geq 1986): X, Y = ℓ_2 , Z = $\ell_2 \oplus \ell_2$, u = v a unitary action.
- F. Rosendal (2017): $Z = X \oplus Y$
- UEx + USP (\geq 2017): complex structures $G = \{1, i, -1, -i\}$
- Kuchment (2021), Castillo F. (2023): $0 \rightarrow X \rightarrow Z \rightarrow Y \rightarrow 0$

Definition

Fix $\lambda : G \curvearrowright Z$ as above, and a *G*-invariant subspace $X \subseteq Z$. Then *G* acts on *X*, by $u(g)x := \lambda(g)_{|X}x$ and on Y := Z/X, by $v(g)(z + X) := \lambda(g)z + X$.

Objective

Study relations between u, v, λ . In particular, given u, v, what are the possible λ 's (we call them compatible with u, v)?

- Kalton "centralizers" (\geq 1979): G = units in a Banach lattice
- Pytlic-Szwarc, Ozawa, Pisier... (\geq 1986): X, Y = ℓ_2 , Z = $\ell_2 \oplus \ell_2$, u = v a unitary action.
- F. Rosendal (2017): $Z = X \oplus Y$
- UEx + USP (\geq 2017): complex structures $G = \{1, i, -1, -i\}$
- Kuchment (2021), Castillo F. (2023): $0 \rightarrow X \rightarrow Z \rightarrow Y \rightarrow 0$

Let us concentrate on the case $Z = X \oplus Y$.

Examples of compatible λ 's on $X \oplus Y$

イロン イロン イヨン イヨン 三日

4/11

On the blackboard:

- diagonal actions,
- conjugate actions,
- c_0 and c.

Derivations

Observation

Given X, Y and u, v as above, the following are equivalent 1 λ_d is a compatible bounded action on $X \oplus Y$, where

$$\lambda_d(g) := egin{pmatrix} u(g) & d(g) \ 0 & v(g) \end{pmatrix}$$

2 $d: G \to B(Y, X)$ is a bounded map such that $\forall g, h \in G$, d(gh) = u(g)d(h) + d(g)v(h).

Definition

A map d is a derivation (for u, v on X, Y) if it satisfies (1)(2) above.

Inner derivations

The simplest example of derivation

Given any $A \in B(Y, X)$, the formula

$$d_A(g) = [u(g), A, v(g)] =: u(g)A - Av(g)$$

defines a derivation, called inner.

Immediate

A derivation *d* is inner if and only if λ_d is conjugate to the diagonal representation.

Assume G is countable, $X = Y = \ell_2(G)$, (with basis $(e_g)_{g \in G}$) and u = v the regular unitary action on $\ell_2(G)$ defined by

$$u(g)(e_h) = e_{gh}.$$

Assume G is countable, $X = Y = \ell_2(G)$, (with basis $(e_g)_{g \in G}$) and u = v the regular unitary action on $\ell_2(G)$ defined by

$$u(g)(e_h) = e_{gh}.$$

Theorems

Day (50) and Dixmier (50): G is amenable ⇒ all derivations for u, u are inner (⇔ all actions λ on ℓ₂(G) ⊕ ℓ₂(G) compatible with u, u are conjugate to the diagonal (unitary) action)

Assume G is countable, $X = Y = \ell_2(G)$, (with basis $(e_g)_{g \in G}$) and u = v the regular unitary action on $\ell_2(G)$ defined by

$$u(g)(e_h) = e_{gh}.$$

Theorems

- Day (50) and Dixmier (50): G is amenable ⇒ all derivations for u, u are inner (⇔ all actions λ on ℓ₂(G) ⊕ ℓ₂(G) compatible with u, u are conjugate to the diagonal (unitary) action)
- Pytlic-Szwarc (86): if $G = \mathbb{F}_{\infty}$, then there exists a non-inner derivation for u, u.
- Open in general for non-amenable groups (Day-Dixmier Pb)

Assume G is countable, $X = Y = \ell_2(G)$, (with basis $(e_g)_{g \in G}$) and u = v the regular unitary action on $\ell_2(G)$ defined by

$$u(g)(e_h) = e_{gh}.$$

Theorems

- Day (50) and Dixmier (50): G is amenable ⇒ all derivations for u, u are inner (⇔ all actions λ on ℓ₂(G) ⊕ ℓ₂(G) compatible with u, u are conjugate to the diagonal (unitary) action)
- Pytlic-Szwarc (86): if $G = \mathbb{F}_{\infty}$, then there exists a non-inner derivation for u, u.
- Open in general for non-amenable groups (Day-Dixmier Pb)

Comments (linear unbounded maps, bounded non-linear maps),

A theorem

Let $0 \rightarrow X \rightarrow Z \rightarrow Y \rightarrow 0$, and actions u, v of a group G on X, Y respectively.

Theorem (Castillo, F. 23)

Assume G is amenable and X is a "G-ultrassummand" (for example X reflexive). Then:

 all actions of G on Z compatible with u and v (attention: there could exist no such actions) are mutually conjugate.

A theorem

Let $0 \rightarrow X \rightarrow Z \rightarrow Y \rightarrow 0$, and actions u, v of a group G on X, Y respectively.

Theorem (Castillo, F. 23)

Assume G is amenable and X is a "G-ultrassummand" (for example X reflexive). Then:

- all actions of G on Z compatible with u and v (attention: there could exist no such actions) are mutually conjugate.
- In particular, when $Z = X \oplus Y$, all such actions are conjugate to the diagonal action.

A theorem

Let $0 \rightarrow X \rightarrow Z \rightarrow Y \rightarrow 0$, and actions u, v of a group G on X, Y respectively.

Theorem (Castillo, F. 23)

Assume G is amenable and X is a "G-ultrassummand" (for example X reflexive). Then:

- all actions of G on Z compatible with u and v (attention: there could exist no such actions) are mutually conjugate.
- In particular, when $Z = X \oplus Y$, all such actions are conjugate to the diagonal action.

Pytlic-Szwarc's is a counterexample without amenability, let us see a counterexample without reflexivity: the already mentioned $G = 2^{<\omega}$ (amenable) acting on $c = c_0 \oplus \mathbb{R}$. The counterexample of the group $2^{<\omega}$ acting on $c = c_0 \oplus \mathbb{R}$ (inspired by Antunes-F.-Grivaux-Rosendal (19))

We have
$$g=(arepsilon_n)_n\in 2^{<\omega}=\{-1,1\}^{<\omega}$$
, $X=c_0$, $Y=\mathbb{R}$, $Z=c_0$

$$u(g)(x) = (\varepsilon_n x_n)_n, \qquad v(g)(y) = y,$$

and

$$\lambda(g) = \begin{pmatrix} u(g) & d(g) \\ 0 & \mathrm{Id}_{\mathbb{R}} \end{pmatrix}.$$

What is d(g)?

The counterexample of the group $2^{<\omega}$ acting on $c = c_0 \oplus \mathbb{R}$ (inspired by Antunes-F.-Grivaux-Rosendal (19))

We have
$$g = (\varepsilon_n)_n \in 2^{<\omega} = \{-1,1\}^{<\omega}$$
, $X = c_0$, $Y = \mathbb{R}$, $Z = c_0$

$$u(g)(x) = (\varepsilon_n x_n)_n, \qquad v(g)(y) = y,$$

and

$$\lambda(g) = \begin{pmatrix} u(g) & d(g) \\ 0 & \mathrm{Id}_{\mathbb{R}} \end{pmatrix}.$$

What is $d(g)$? Well, since $\lambda(g)(\underline{1}) = (\varepsilon_n)_n = \underline{1} - 2\sum_{\varepsilon_n = -1} e_n$,
 $d(g)y = -2y \sum_{\varepsilon_n = -1} e_n = -2\rho_{[e_n,\varepsilon_n = -1]}(y\underline{1})$

Is it inner?

The counterexample of the group $2^{<\omega}$ acting on $c = c_0 \oplus \mathbb{R}$ (inspired by Antunes-F.-Grivaux-Rosendal (19))

We have
$$g=(arepsilon_n)_n\in 2^{<\omega}=\{-1,1\}^{<\omega}$$
, $X=c_0$, $Y=\mathbb{R}$, $Z=c_0$

$$u(g)(x) = (\varepsilon_n x_n)_n, \qquad v(g)(y) = y,$$

and

$$\lambda(g) = \begin{pmatrix} u(g) & d(g) \\ 0 & \operatorname{Id}_{\mathbb{R}} \end{pmatrix}.$$

What is d(g)? Well, since $\lambda(g)(\underline{1}) = (\varepsilon_n)_n = \underline{1} - 2\sum_{\varepsilon_n = -1} e_n$,

$$d(g)y = -2y \sum_{\varepsilon=-1} e_n = -2p_{[e_n,\varepsilon_n=-1]}(y\underline{1})$$

Is it inner? if d(g) = [u(g), L, v(g)] holds for some L, then

$$d(g)y = u(g)Ly - Ly = (u(g) - Id_{c_0})Ly = -2p_{[e_n, \varepsilon_n = -1]}(Ly).$$

This holds $\forall g \text{ iff } Ly = y\underline{1}$, but this L does not belong to $B(\mathbb{R}, c_0)$.

So *d* is not inner and λ not conjugate to the diagonal action.

So d is not inner and λ not conjugate to the diagonal action.

This is equivalent to observing that c_0 is badly complemented in c in the sense that it is not complemented by a *G*-equivariant projection, which is the same as saying that c_0 does not admit a *G*-invariant complement.

Why is it equivalent?

So d is not inner and λ not conjugate to the diagonal action.

This is equivalent to observing that c_0 is badly complemented in c in the sense that it is not complemented by a *G*-equivariant projection, which is the same as saying that c_0 does not admit a *G*-invariant complement.

Why is it equivalent? If P is a G-equivariant projection from $Z = X \oplus Y$ onto X, then let $A : Y \to X$ be defined by A(y) = P(0, y). Then

 $u(g)Ay = u(g)P(0,y) = P(\lambda(g)(0,y)) = P(d(g)y, v(g)y)$

= P((d(g)y, 0)) + P(0, v(g)y) = d(g) + Av(g)y,

and therefore $d = d_A$ is inner. Conversely, given $d = d_A$, then P(x, y) = x + Ay is *G*-equivariant.

THANK YOU - GRACIAS!

- L. Antunes, V. Ferenczi, S. Grivaux and Ch. Rosendal, *Light groups of isomorphisms of Banach spaces and invariant LUR renormings*, Pacific J. Math., 301 (1) (2019) 31–54.
- J. Castillo and V. Ferenczi, *Group actions on twisted sums of Banach spaces*, Bulletin of the Malaysian Mathematical Sciences Society, 46, Article number: 135 (2023).
- V. Ferenczi and Ch. Rosendal, *Non-unitarisable representations and maximal symmetry*, J. IMJ 16 (2017) 421–445.
- P. Kuchment, *Three-representation problem in Banach spaces*, Complex Analysis and Operator Theory 15, 34 (2021).
- G. Pisier, Similarity problems and completely bounded maps. Includes the solution to "The Halmos problem", Lecture Notes in Mathematics, 1618. Springer-Verlag, Berlin, 2001.