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On isometry groups on the space of converging sequences

Group actions

Throughout the talk, G is a fixed group.

A linear action λ : G ↷ Z of G on a Banach space Z , i.e. a group
homomorphism

λ : G → GL(Z ) ⊆ B(Z )

will always be assumed bounded, i.e. supg∈G ∥λ(g)∥ < +∞.

Given λ as above, a subspace X ⊆ Z is G -invariant if
λ(g)(X ) = X ,∀g ∈ G .
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Definition

Fix λ : G ↷ Z as above, and a G -invariant subspace X ⊆ Z .
Then G acts on X , by u(g)x := λ(g)|X x
and on Y := Z/X , by v(g)(z + X ) := λ(g)z + X .

Objective

Study relations between u, v , λ. In particular, given u, v , what are
the possible λ’s (we call them compatible with u, v)?

Kalton “centralizers" (≥ 1979): G = units in a Banach lattice
Pytlic-Szwarc, Ozawa, Pisier... (≥ 1986):
X ,Y = ℓ2,Z = ℓ2 ⊕ ℓ2, u = v a unitary action.
F. - Rosendal (2017): Z = X ⊕ Y

UEx + USP (≥ 2017): complex structures G = {1, i ,−1,−i}
Kuchment (2021), Castillo - F. (2023): 0 → X → Z → Y → 0

Let us concentrate on the case Z = X ⊕ Y .
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Examples of compatible λ’s on X ⊕ Y

On the blackboard:

diagonal actions,
conjugate actions,
c0 and c .
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Derivations

Observation

Given X ,Y and u, v as above, the following are equivalent
1 λd is a compatible bounded action on X ⊕ Y , where

λd(g) :=

(
u(g) d(g)

0 v(g)

)
,

2 d : G → B(Y ,X ) is a bounded map such that ∀g , h ∈ G ,
d(gh) = u(g)d(h) + d(g)v(h).

Definition

A map d is a derivation (for u, v on X ,Y ) if it satisfies (1)(2)
above.
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Inner derivations

The simplest example of derivation

Given any A ∈ B(Y ,X ), the formula

dA(g) = [u(g),A, v(g)] =: u(g)A− Av(g)

defines a derivation, called inner.

Immediate

A derivation d is inner if and only if λd is conjugate to the diagonal
representation.
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Classical example: unitarizable actions

Assume G is countable, X = Y = ℓ2(G ), (with basis (eg )g∈G ) and
u = v the regular unitary action on ℓ2(G ) defined by

u(g)(eh) = egh.

Theorems

Day (50) and Dixmier (50): G is amenable ⇒ all derivations
for u, u are inner (⇔ all actions λ on ℓ2(G )⊕ ℓ2(G ) compatible
with u, u are conjugate to the diagonal (unitary) action)
Pytlic-Szwarc (86): if G = F∞, then there exists a non-inner
derivation for u, u.
Open in general for non-amenable groups (Day-Dixmier Pb)

Comments (linear unbounded maps, bounded non-linear maps)
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A theorem

Let 0 → X → Z → Y → 0, and actions u, v of a group G on X ,Y
respectively.

Theorem (Castillo, F. 23)

Assume G is amenable and X is a “G -ultrassummand" (for
example X reflexive). Then:

all actions of G on Z compatible with u and v (attention:
there could exist no such actions) are mutually conjugate.

In particular, when Z = X ⊕ Y , all such actions are conjugate
to the diagonal action.

Pytlic-Szwarc’s is a counterexample without amenability, let us see
a counterexample without reflexivity: the already mentioned
G = 2<ω (amenable) acting on c = c0 ⊕ R.
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The counterexample of the group 2<ω acting on c = c0 ⊕ R
(inspired by Antunes-F.-Grivaux-Rosendal (19))

We have g = (εn)n ∈ 2<ω = {−1, 1}<ω, X = c0, Y = R, Z = c

u(g)(x) = (εnxn)n, v(g)(y) = y ,

and

λ(g) =

(
u(g) d(g)

0 IdR

)
.

What is d(g)?

Well, since λ(g)(1) = (εn)n = 1 − 2
∑

εn=−1 en,

d(g)y = −2y
∑
ε=−1

en = −2p[en,εn=−1](y1)

Is it inner? if d(g) = [u(g), L, v(g)] holds for some L, then

d(g)y = u(g)Ly − Ly = (u(g)− Idc0)Ly = −2p[en,εn=−1](Ly).

This holds ∀g iff Ly = y1, but this L does not belong to B(R, c0).
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So d is not inner and λ not conjugate to the diagonal action.

This is equivalent to observing that c0 is badly complemented in c
in the sense that it is not complemented by a G -equivariant
projection, which is the same as saying that c0 does not admit a
G -invariant complement.

Why is it equivalent? If P is a G -equivariant projection from
Z = X ⊕ Y onto X , then let A : Y → X be defined by
A(y) = P(0, y). Then

u(g)Ay = u(g)P(0, y) = P(λ(g)(0, y)) = P(d(g)y , v(g)y)

= P((d(g)y , 0)) + P(0, v(g)y) = d(g) + Av(g)y ,

and therefore d = dA is inner. Conversely, given d = dA, then
P(x , y) = x + Ay is G -equivariant.
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