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Linearization of bounded holomorphic mappings

Let X and Y be complex Banach spaces. If U ⊂ X is an open set, a
mapping f : U→ Y is said to be holomorphic if for every x0 ∈ U
there exists a sequence (Pkf (x0)), with each Pkf (x0) a continuous
k-homogeneous polynomial, such that the series

f (x) =
∞∑
k=0

Pkf (x0)(x − x0)

converges uniformly in some neighborhood of x0 contained in U.

Equivalently, for every x0 ∈ U, the function f is Fréchet differentiable
at x0; that is, there exists a differential of f at x0, df (x0) ∈ L (X, Y),
such that

lim
h→0

f (x0 + h)− f (x0)− df (x0)(h)
∥h∥ = 0
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Linearization of bounded holomorphic mappings

Some facts about holomorphic functions that we use in the sequel:

A function f : U→ Y is said to be weakly holomorphic if y∗ ◦ f is
holomorphic, for all y∗ ∈ Y∗.

Theorem
A function f : U→ Y is holomorphic if and only if it is weakly
holomorphic.

Let f : BX → Y holomorphic and bounded: sup{∥f (x)∥ : x ∈ BX} < ∞.

The differential of f at 0 is df (0)(x) = limt→0
f (tx)−f (0)

t .

As a consequence of Cauchy inequalities

∥df (0)∥ ≤ sup
x∈BX

∥f (x)∥.
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Linearization of bounded holomorphic mappings

Our next goal is the space

H ∞(BX, Y) = {f : BX → Y : f is holomorphic and bounded}

which is a Banach space with the norm ∥f∥ = supx∈BX ∥f (x)∥.

A linearization procedure for this space was developed by Jorge
Mujica in his article Linearization of bounded holomorphic
mappings on Banach spaces, Trans. Amer. Math. Soc. (1991).
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Linearization of bounded holomorphic mappings

The construction of the predual here is an abstract procedure that
has been used in various situations. It is based on the following
result:
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Linearization of bounded holomorphic mappings

We consider τ0 the compact-open topology on H ∞(BX). An
application of Ascoli’s theorem allows us to prove that BH ∞(BX) is
τ0-compact. In fact, on this ball, convergence in the topology τ0
coincides with pointwise convergence.

By Dixmier-Ng theorem, H ∞(BX) is a dual space with predual given
by

G ∞(BX) = {φ ∈ H ∞(BX)∗ : φ|BH ∞(BX )
is τ0 − continuous}.

For x ∈ BX and f ∈ H ∞(BX) denote δ(x)(f ) = f (x). Clearly
δ(x) : H ∞(BX) → C is linear and continuous meaning that
δ(x) ∈ H ∞(BX)∗.

Also, δ(x)|BH ∞(B)
is τ0-continuous so δ(x) ∈ G ∞(BX).

We thus have (G ∞(BX))∗ ∼= H ∞(BX).
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Linearization of bounded holomorphic mappings

For H ∞(BX, Y) = {f : X → Y bounded holomorphic mappings} we
have the Banach space G ∞(BX) and the mapping δ : X → G ∞(BX)
given by δ(x)(f ) = f (x) satisfying

• δ ∈ H ∞(BX,G ∞(BX)) and ∥δ∥ = 1. Since f ◦ δ = f is
holomorphic for each f ∈ (G ∞(BX))∗ ∼= H ∞(BX) we have that δ
is weakly holomorphic and hence holomorphic. Also,

∥δ∥ = sup
x∈BX

∥δ(x)∥ = sup
x∈BX, f∈BH ∞(BX )

|f (x)| = 1. ✓

• span δ(BX) is dense in G ∞(BX). It is evident that
f ∈ G ∞(BX)∗ ∼= H ∞(BX) satisfying f |δ(BX) ≡ 0 should fulfill
f ≡ 0. ✓

• For each f ∈ H ∞(BX, Y) there is a linear mapping
Tf ∈ L (G ∞(BX), Y) such that f = Tf ◦ δ. For y∗ ∈ Y∗ we know
that y∗ ◦ f ∈ H ∞(BX) with ∥y∗ ◦ f∥ ≤ ∥y∗∥∥f∥.
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Linearization of bounded holomorphic mappings

Let us define

Tf : G ∞(BX) → Y∗∗

u 7→ [y∗ 7→ ⟨y∗ ◦ f ,u⟩].

It is clear that Tf is linear and ∥Tf∥ ≤ ∥f∥. Also, since
Tf (δ(x)) = f (x) ∈ Y and span δ(BX) is dense in G ∞(BX) we obtain
that Tf (G ∞(BX)) ⊂ Y. ✓

• The mapping H ∞(BX, Y) → L (G ∞(BX), Y) given by f 7→ Tf is a
linear surjective isometry. It is easily seen that f 7→ Tf is linear.
Also, for each T ∈ L (G ∞(BX), Y) we obtain that
T ◦ δ ∈ H ∞(BX, Y) with ∥T ◦ δ∥ ≤ ∥T∥. Thus, appealing to the
previous bullet, the result holds. ✓
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Linearization of bounded holomorphic mappings

Therefore, we have the commutative diagram and properties:

BX
f //

δ

��

Y

G ∞(BX)
Tf

;;

1. G ∞(BX) is unique (unless isometric isomorphism).
2. If (fi)i is a bounded net in H ∞(BX) and f ∈ H ∞(BX) then
Tfi

w∗

→ Tf if and only if fi(x) → f (x) for every x ∈ X.
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Linearization of bounded holomorphic mappings

Proposition
X is isometric to a 1-complemented subspace of G ∞(BX).

Proof. We linearize the mapping Id ∈ H ∞(BX, X):

BX
Id //

δ

��

X

G ∞(BX)
TId

<<

Now, we differentiate at 0 the identity Id = TId ◦ δ obtaining

Id = d(Id)(0) = d(TId)(δ(0)) ◦ d(δ)(0) = TId ◦ d(δ)(0).

And the previous equality of linear mappings holds for every x ∈ X:
Id(x) = TId(d(δ)(0)(x)).
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Linearization of bounded holomorphic mappings

This provides us with a new diagram

X Id //

d(δ)(0)
��

X

G ∞(BX)
TId

;;

Let us see that d(δ)(0) : X → G ∞(BX) is an isometry.

On the one hand,

∥x∥ = ∥TId(d(δ)(0)(x))∥ ≤ ∥TId∥∥d(δ)(0)(x)∥ = ∥d(δ)(0)(x)∥.

On the other hand,

∥d(δ)(0)(x)∥ = sup
f∈BH ∞(BX )

|⟨f ,d(δ)(0)(x)⟩| = sup
f∈BH ∞(BX )

∥df (0)(x)∥

≤ sup
f∈BH ∞(BX )

∥df (0)∥∥x∥ ≤ ∥x∥.
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Linearization of bounded holomorphic mappings

To see that d(δ)(0)(X) is 1-complemented in G ∞(BX) let us
consider the mapping Q = d(δ)(0) ◦ TId : G ∞(BX) → G ∞(BX).

It is clear that ∥Q∥ ≤ 1 and that this is a projection onto d(δ)(0)(X):

Q(d(δ)(0)(x)) = d(δ)(0)◦TId◦d(δ)(0)(x) = d(δ)(0)◦Id(x) = d(δ)(0)(x).

As in the linearization of polynomials we have:

Proposition
BG ∞(BX) = Γ(δ(BX)).

Proof. δ(BX) ⊂ BG ∞(BX) is a norming set for H ∞(BX).
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Linearization of bounded holomorphic mappings

The bounded approximation property with constant 1 is called
metric approximation property (MAP): X has the MAP if there exists a
net of finite rank operators (Tα) such that ∥Tα∥ ≤ 1 and Tα(x) → x
for all x ∈ X.

Our goal is to prove: X has the MAP ⇔ G ∞(BX) has the MAP.

Each f ∈ H ∞(BX) is written as f (x) =
∑∞

k=0 Pkf (0)(x) for all x ∈ BX .
If we denote

Smf (x) =
m∑
k=0

Pkf (0)(x) and σmf (x) =
1

m+ 1

m∑
k=0

Skf (0)(x)

we know that Smf (x) → f (x) and σmf (x) → f (x).

With a clever argument Mujica proved that ∥σmf∥ ≤ ∥f∥.

Denoting by P(X, Y) the vector space of polynomials, it results:
Theorem
For each f ∈ BH ∞(BX,Y) we have a sequence (σmf ) ⊂ BP(X,Y) such
that σmf (x) → f (x) for every x ∈ BX . 13/18



Linearization of bounded holomorphic mappings

Pf (X, Y): polynomials from X to Y whose images are contained in
finite dimensional subspaces of Y.
Proposition
If X has the MAP, for each f ∈ BH ∞(BX,Y) there is a net
(Pα) ⊂ BPf (X,Y) such that Pα(x) → f (x) for every x ∈ BX .

Proof. By the previous theorem it is enough to see that for
P ∈ BP(X,Y) there is a net (Pα) ⊂ BPf (X,Y) such that Pα(x) → P(x).

Since X has the MAP there is a net (Tα) ⊂ BL (X,X) of finite rank
operators converging point-wise to the identity. Taking Pα = P ◦ Tα
it is clear that Pα ∈ Pf (X, Y) and Pα(x) → P(x).

Finally, since Tα(BX) ⊂ BX we have that for every x ∈ BX

|Pα(x)| = |P(Tα(x))| ≤ ∥P∥ ≤ 1.

Note that the previous argument does not work with BAP instead of
MAP.
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Linearization of bounded holomorphic mappings

Theorem
X has the MAP if and only if G ∞(BX) has the MAP.

Proof. (⇐) 1-complemented subspaces inherit the MAP.

(⇒) For the mapping δ ∈ BH ∞(BX,G ∞(BX)) the previous proposition
provides us of a net (Pα) ⊂ BPf (X,G ∞(BX)) such that Pα(x) → δ(x) for
all x ∈ BX . Linearizing the polynomials we have the commutative
diagram BX

Pα //

δ

��

G ∞(BX)

G ∞(BX)
TPα

99

Note that TPα are finite rank mappings with ∥TPα∥ = ∥Pα∥ ≤ 1.

Also, TPα(δ(x)) = Pα(x) → δ(x), then TPα → Id on span δ(BX). Since
the net (TPα) is bounded the same holds for the closure. Hence,
G ∞(BX) has the MAP. 15/18



Linearization of bounded holomorphic mappings

It is also true that

X has the AP if and only if G ∞(BX) has the AP.

The proof is much more complicated: it is needed a net
(Pα) ⊂ Pf (X,G ∞(BX)) satisfying Pα → δ in a certain topology such
that TPα

τ0→ Id.

Open problem: X has the BAP ⇒ G ∞(BX) has the BAP?
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