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Linearization of homogeneous polynomials

A function between Banach spaces P : X — Y is a k-homogeneous
polynomial if there exists a k-linear mapping A: X x --- x X — Y
such that P(x) = A(x, ..., x) for x € X.

A k-homogeneous polynomial P : X — Y is continuous if and only if
there is a constant C > o such that for every x € X,

IPG|| < Cllx|I*.
For each continuous k-homogeneous polynomial P: X — Y we

define a norm ||P|| to be the infimum of all constants C satisfying the
previous inequality. That is,

[[PI| = sup{[|[P(x)]| : x € Bx}.
With this norm, 22(*X, Y) is a Banach space.

There is a linearization procedure for this space through the
symmetric projective tensor product.
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Linearization of homogeneous polynomials

Inside ®kX the span of all elementary symmetric tensors
@fx = x® - - @ x is the symmetric tensor product denoted by ®k’s X.

For K = C, we can restrict to sums instead linear combinations.
k
Indeed, 0, A @k x; = ST @*(A*x) and
S0 IR = S0 1A Exi[|*. Analogously, for K = R, we can just
consider u = Y"1 ¢ @ x; with ¢ = £1.

For the sake of simplicity, we will confine ourselves to complex
scalars.

We define a norm on ®"’5 X, called the symmetric projective norm:
n n
u) = inf {Z Ixllf: u= Z@"x,} .
i=1 i=1

This is a norm and satisfies: 7s(®*x) = ||x||* and 7s(u) > 7 (u).
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Linearization of homogeneous polynomials

We denote by ®fer the k-symmetric tensor product of X endowed
with the symmetric projective norm, which is a normed space and

——k,
its completion by ®7:X.

Ray Ryan in 1980 in his doctoral thesis proved that through this
space there is a linearization procedure for 22(*X,Y) with all the
properties that we have described.
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General linearization procedure

Consider €' (U,Y) = {f : U — Y function of a certain class}, where U
is a given type of set, Y is a Banach space and ¢'(U, Y) results to be a
Banach space with a norm denoted by || - ||«-

Our linearization procedure consists in obtaining a Banach space
%(U) and a canonical mapping ¢ : U — ¢(U) satisfying:

« Foreach f € (U,Y) there is a linear mapping Ty € Z(¥4(U),Y)

such thatf = Tf o 0.
<y e (U,9(U))and ||6]l¢ = 1.
+ The mapping
¢(U,Y) = Z(4(),Y)
f — Tf

is a linear surjective isometry.
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Linearization of homogeneous polynomials

For 2(*X,Y) = {P: X — Y continuous k-homogeneous polynomial}

we have the Banach space @:SX and the mapping § : X — @isx
given by 6(x) = ®Fx satisfying
+ For each P € 22(*X,Y) there is a linear mapping
Tp € f(@f:x, Y)suchthat P = Tpod. If u =37  ®x; then
Tp(u) = 31, P(x;) is well defined and linear. Also, for each
representation of u, || Tp(u)|| < 327, [|P]l|Ix;||*. Hence, ||Tp| < ||P||
and Tp extends to the closure with the same norm. v/
- 5 € P(RX, @:’jx) and ||§|| = 1. The mappingd is a
k-homogeneous polynomial since it is the restriction to the
diagonal of the k-linear mapping

Xx o x X X

1
(X1,...7Xk) — M Z Xo(1) ® - ® Xo(k)-

oESy

Also, 7s(3(X)) = ms(®Fx) = ||x||¥, so ||6]| = 1. v/ it



Linearization of homogeneous polynomials

——k,
+ The mapping Z(*X,Y) — ff(@ﬁjx, Y) given by P — Tpis a
linear surjective isometry. It is clear that P — Tp is linear. Also,
—~k,
foreach T ¢ .Z(@F'SSX, Y) we have To§ € 2(fX,Y) with
|Tod|| <||T||. Appealing to the first bullet, the result holds. v/

Thus, we have the commutative diagram and properties:

x—F oy

A

—~k,s

—R,s
1. (®,, X)* = 2(*X).
. .Sk
2. spand(X) is dense in Q,_X.
ks . . . . -
3. ®,, Xis unique (unless isometric isomorphism).

4. If (P;); is a bounded net in 22(kX) and P € 22(kX) then Tp, Y Te
if and only if P;(x) — P(x) for every x € X. s



Linearization of homogeneous polynomials

Recall 75(u) > m(u); let us see that the inequality could be strict.

Example
Let {e,} be the canonical basis of ¢,. Then,
Uu=e ®e,+e ®e c®° satisfies 7(u) = 2 < 4 = 7s(u).

Clearly, w(u) < [les||[[e=]| + [[e:[/[[es]| = 2. Also, let
B € Bil(¢1 x £7) = (L41&.44)* given by B(X,y) = (X1 + X2) - (V4 + V).
Then ||B|| =1 and

w(u) > |Tg(u)| = |B(es,e) + B(es, eq)| = 2.

Note that y = Eete)—8e—e) then r (y) < letelHea—al® _

Now, let P € 2(%¢;) = (@i’:&)* given by P(x) = 4x:x,. Then,
[|P|| = 1. Indeed, |4X:Xz| < (]Xa] + |X2])? < [Ix||> and P(&E2) = 1.

Finally,

P(es+e,) —P(e; —e
ws(u) > To(u)| = | TP e, )
14




Linearization of homogeneous polynomials

For a set C in a Banach space X we denote by I'(C) the absolute
convex hull of C; that is the set of all linear combinations > a;x;
with x; € Cforalliand 7, |a;| < 1.

Consequence of Hahn-Banach theorem
If C C By is a norming set for X* then T(C) = By.

Particular case
B®:X = T(6(Bx)).

Proof. Since 6(Bx) C E@h,sx is a norming set for 22(*X) the result
holds. b
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Linearization of homogeneous polynomials

A kR-homogeneous polynomial P: X — Y is compact (weakly
compact) if P(Bx) is a compact (weakly compact) set of Y.

Proposition
The polynomial P is compact (weakly compact) if and only if the
linear operator Tp is compact (weakly compact).

Proof. Recall

X—F oy

A

—k,s
Since P(By) C Tp(B®h,sX) the implication (<) is clear.
For (=) we use that T respects compact and weakly compact sets
and the chain of equalities

TP(B®’:SSX) = TP(E@,;X) = Tp(T(5(Bx))) = T(Te(3(Bx))) = [(P(Bx)).
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Linearization of homogeneous polynomials

Proposition

X is isomorphic to a complemented subspace of @fx

Proof. We prove it for R = 2. The general case follows by a similar,
more involved argument which shows that @:’SSX is isomorphicto a
complemented subspace of @:H)SX [Blasco, Studia Math. (1997)].
Take X, € X and x§ € X* such that x5(xo) = 1= [|Xo| = [|X5]|- Let

jiX— @f:x be given by

JX) = X®Xo+Xo ®X — X5(X)(®°%0)
®?(X + Xo) — ®*(X — Xo)

- . — X 00(@K).

It is clear that j is linear and ||j|| < 5.

Now, define a linear mapping q : @:SSX — X by q(®2X) = X5(X)X.

Note that ||g|| = 1. Indeed, for u = 1 ®2x;: .



Linearization of homogeneous polynomials

la(u)ll =

n n
D x|l < Y lIxil>
=i =i

Since this is valid for each representation of u we obtain that
l[q(u)l] < 7s(u). Also, [|g(&*%o)| = [[XolI* = ms(®°Xo).

Finally, we have to show that g o j = Idx:

_ X3(X+ Xo)(X +Xo) = X3(X = Xo)(X = Xo) X5(X)X5 (X0 )Xo = X.

aG(x) .

—~Rk;ss | .
As a consequence of this result we derive that if QX is reflexive
then X should be reflexive. Let us see in the following example that

the reverse implication is false.
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Linearization of homogeneous polynomials

Example

—k

“,S . .
&, L> is not reflexive.

—~Rk,s . —~R,s .
Indeed, ®ﬂ5 ¢, contains a copy of /,. Moreover, ®ﬂ5 ¢, contains a
complemented isometric copy of /.

R,
Let D be the closed subspace of ®,:£2 generated by the
elementary tensors ®@*e,, where {e,} is the canonical basis of /,.

Foru = ZL1 an @F e, we have that 7s(u) < ZL1 |aen|. Consider
now the polynomial P e 2(*t,) given by P(x) = N _ sgn(an)~"'xk,
where sgn(ay) = oy~ We have

k/2
x)<Z|xn’*<<Z|xn2) = [IxI|* and |P(en)] = 1.
n=1 n=1

Hence ||P|| = 1and
ms(u) > [Te(u

Zan en)

implying that D is isometric to 61

N
=2 laal,
n=1
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Linearization of homogeneous polynomials

R,
Finally, linearizing the k-homogeneous polynomial Q : ¢, — ®7T:€2,

—R,s —k,s . .
Q(X) = >_p2, Xk @k ey we obtain Tg : ®, £ — ), £, satisfying:

« Im(Tq) C D,
© TQ(®ken) S Q(en) = ®ken, (i.e., TQlD = Id)
* el = llQ = 1.

—k,
Thus, D is 1-complemented in ®7:€2-

Let us comment without proof that sometimes the projective
symmetric tensor product of a reflexive space is reflexive. For
instance:

ks . c
Q.. Lp Is reflexive for every kR < p < oo.
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