
Linearization of non-linear functions II

Verónica Dimant
Lluis Santaló school
Santander, July 2023

Universidad de San Andrés and CONICET, Argentina

1/14



Linearization of homogeneous polynomials

A function between Banach spaces P : X → Y is a k-homogeneous
polynomial if there exists a k-linear mapping A : X × · · · × X → Y
such that P(x) = A(x, . . . , x) for x ∈ X.

A k-homogeneous polynomial P : X → Y is continuous if and only if
there is a constant C > 0 such that for every x ∈ X,

∥P(x)∥ ≤ C∥x∥k.

For each continuous k-homogeneous polynomial P : X → Y we
define a norm ∥P∥ to be the infimum of all constants C satisfying the
previous inequality. That is,

∥P∥ = sup{∥P(x)∥ : x ∈ BX}.

With this norm, P(kX, Y) is a Banach space.

There is a linearization procedure for this space through the
symmetric projective tensor product.
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Linearization of homogeneous polynomials

Inside
⊗k X the span of all elementary symmetric tensors

⊗kx = x⊗ · · · ⊗ x is the symmetric tensor product denoted by
⊗k,s X.

For K = C, we can restrict to sums instead linear combinations.
Indeed,

∑n
i=1 λi ⊗k xi =

∑n
i=1 ⊗k(λ

1/k
i xi) and∑n

i=1 |λi|∥xi∥k =
∑n

i=1 ∥λ
1/k
i xi∥k. Analogously, for K = R, we can just

consider u =
∑n

i=1 ϵi ⊗k xi with ϵi = ±1.

For the sake of simplicity, we will confine ourselves to complex
scalars.

We define a norm on
⊗k,s X, called the symmetric projective norm:

πs(u) = inf

{ n∑
i=1

∥xi∥k : u =
n∑
i=1

⊗kxi

}
.

This is a norm and satisfies: πs(⊗kx) = ∥x∥k and πs(u) ≥ π(u).
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Linearization of homogeneous polynomials

We denote by
⊗k,s

πs
X the k-symmetric tensor product of X endowed

with the symmetric projective norm, which is a normed space and
its completion by

⊗̂k,s
πs
X.

Ray Ryan in 1980 in his doctoral thesis proved that through this
space there is a linearization procedure for P(kX, Y) with all the
properties that we have described.
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General linearization procedure

Consider C (U, Y) = {f : U→ Y function of a certain class}, where U
is a given type of set, Y is a Banach space and C (U, Y) results to be a
Banach space with a norm denoted by ∥ · ∥C .

Our linearization procedure consists in obtaining a Banach space
G (U) and a canonical mapping δ : U→ G (U) satisfying:

• For each f ∈ C (U, Y) there is a linear mapping Tf ∈ L (G (U), Y)
such that f = Tf ◦ δ.

• δ ∈ C (U,G (U)) and ∥δ∥C = 1.
• The mapping

C (U, Y) → L (G (U), Y)
f 7→ Tf

is a linear surjective isometry.
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Linearization of homogeneous polynomials

For P(kX, Y) = {P : X → Y continuous k-homogeneous polynomial}
we have the Banach space

⊗̂k,s
πs
X and the mapping δ : X →

⊗̂k,s
πs
X

given by δ(x) = ⊗kx satisfying

• For each P ∈ P(kX, Y) there is a linear mapping
TP ∈ L (

⊗̂k,s
πs
X, Y) such that P = TP ◦ δ. If u =

∑n
i=1 ⊗kxi then

TP(u) =
∑n

i=1 P(xi) is well defined and linear. Also, for each
representation of u, ∥TP(u)∥ ≤

∑n
i=1 ∥P∥∥xi∥k. Hence, ∥TP∥ ≤ ∥P∥

and TP extends to the closure with the same norm. ✓
• δ ∈ P(kX,

⊗̂k,s
πs
X) and ∥δ∥ = 1. The mapping δ is a

k-homogeneous polynomial since it is the restriction to the
diagonal of the k-linear mapping

X × · · · × X → ⊗̂k,s
πs X

(x1, . . . , xk) 7→
1
k!
∑
σ∈Sk

xσ(1) ⊗ · · · ⊗ xσ(k).

Also, πs(δ(x)) = πs(⊗kx) = ∥x∥k, so ∥δ∥ = 1. ✓ 6/14



Linearization of homogeneous polynomials

• The mapping P(kX, Y) → L (
⊗̂k,s

πs
X, Y) given by P 7→ TP is a

linear surjective isometry. It is clear that P 7→ TP is linear. Also,
for each T ∈ L (

⊗̂k,s
πs
X, Y) we have T ◦ δ ∈ P(kX, Y) with

∥T ◦ δ∥ ≤ ∥T∥. Appealing to the first bullet, the result holds. ✓

Thus, we have the commutative diagram and properties:

X P //

δ ��

Y

⊗̂k,s
πs
X

TP

>>

1. (
⊗̂k,s

πs
X)∗ ∼= P(kX).

2. span δ(X) is dense in
⊗̂k,s

πs
X.

3.
⊗̂k,s

πs
X is unique (unless isometric isomorphism).

4. If (Pi)i is a bounded net in P(kX) and P ∈ P(kX) then TPi
w∗

→ TP
if and only if Pi(x) → P(x) for every x ∈ X. 7/14



Linearization of homogeneous polynomials

Recall πs(u) ≥ π(u); let us see that the inequality could be strict.
Example
Let {en} be the canonical basis of ℓ1. Then,
u = e1 ⊗ e2 + e2 ⊗ e1 ∈

⊗2,s
ℓ1 satisfies π(u) = 2 < 4 = πs(u).

Clearly, π(u) ≤ ∥e1∥∥e2∥+ ∥e2∥∥e1∥ = 2. Also, let
B ∈ Bil(ℓ1 × ℓ1) ∼= (ℓ1⊗̂πℓ1)

∗ given by B(x, y) = (x1 + x2) · (y1 + y2).
Then ∥B∥ = 1 and

π(u) ≥ |TB(u)| = |B(e1, e2) + B(e2, e1)| = 2.

Note that u = ⊗2(e1+e2)−⊗2(e1−e2)
2 then πs(u) ≤ ∥e1+e2∥2+∥e1−e2∥2

2 = 4.

Now, let P ∈ P(2ℓ1) ∼= (
⊗̂2,s

πs
ℓ1)

∗ given by P(x) = 4x1x2. Then,
∥P∥ = 1. Indeed, |4x1x2| ≤ (|x1|+ |x2|)2 ≤ ∥x∥2 and P( e1+e2

2 ) = 1.

Finally,

πs(u) ≥ |TP(u)| =
∣∣∣∣P(e1 + e2)− P(e1 − e2)

2

∣∣∣∣ = 4.
8/14



Linearization of homogeneous polynomials

For a set C in a Banach space X we denote by Γ(C) the absolute
convex hull of C; that is the set of all linear combinations

∑n
i=1 aixi

with xi ∈ C for all i and
∑n

i=1 |ai| ≤ 1.

Consequence of Hahn-Banach theorem
If C ⊂ BX is a norming set for X∗ then Γ(C) = BX .

Particular case
B⊗̂k,s

πs X
= Γ(δ(BX)).

Proof. Since δ(BX) ⊂ B⊗̂k,s
πs X

is a norming set for P(kX) the result
holds.
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Linearization of homogeneous polynomials

A k-homogeneous polynomial P : X → Y is compact (weakly
compact) if P(BX) is a compact (weakly compact) set of Y.
Proposition
The polynomial P is compact (weakly compact) if and only if the
linear operator TP is compact (weakly compact).

Proof. Recall
X P //

δ ��

Y

⊗̂k,s
πs
X

TP

>>

Since P(BX) ⊂ TP(B⊗̂k,s
πs X

) the implication (⇐) is clear.

For (⇒) we use that Γ respects compact and weakly compact sets
and the chain of equalities
TP(B⊗̂k,s

πs X
) = TP(B⊗̂k,s

πs X
) = TP(Γ(δ(BX))) = Γ(TP(δ(BX))) = Γ(P(BX)).
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Linearization of homogeneous polynomials

Proposition

X is isomorphic to a complemented subspace of
⊗̂k,s

πs
X.

Proof. We prove it for k = 2. The general case follows by a similar,
more involved argument which shows that

⊗̂k,s
πs
X is isomorphic to a

complemented subspace of
⊗̂(k+1),s

πs
X [Blasco, Studia Math. (1997)].

Take xo ∈ X and x∗0 ∈ X∗ such that x∗0(x0) = 1 = ∥x0∥ = ∥x∗0∥. Let
j : X →

⊗̂2,s
πs
X be given by

j(x) = x ⊗ x0 + x0 ⊗ x − x∗0(x)(⊗2x0)

=
⊗2(x + x0)−⊗2(x − x0)

2 − x∗0(x)(⊗2x0).

It is clear that j is linear and ∥j∥ ≤ 5.

Now, define a linear mapping q :
⊗̂2,s

πs
X → X by q(⊗2x) = x∗0(x)x.

Note that ∥q∥ = 1. Indeed, for u =
∑n

i=1 ⊗2xi: 11/14



Linearization of homogeneous polynomials

∥q(u)∥ =

∥∥∥∥∥
n∑
i=1

x∗0(xi)xi

∥∥∥∥∥ ≤
n∑
i=1

∥xi∥2.

Since this is valid for each representation of u we obtain that
∥q(u)∥ ≤ πs(u). Also, ∥q(⊗2x0)∥ = ∥x0∥2 = πs(⊗2x0).

Finally, we have to show that q ◦ j = IdX :

q(j(x)) = x∗0(x + x0)(x + x0)− x∗0(x − x0)(x − x0)

2 − x∗0(x)x∗0(x0)x0 = x.

As a consequence of this result we derive that if
⊗̂k,s

πs
X is reflexive

then X should be reflexive. Let us see in the following example that
the reverse implication is false.
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Linearization of homogeneous polynomials

Example⊗̂k,s
πs
ℓ2 is not reflexive.

Indeed,
⊗̂k,s

πs
ℓ2 contains a copy of ℓ1. Moreover,

⊗̂k,s
πs
ℓ2 contains a

complemented isometric copy of ℓ1.

Let D be the closed subspace of
⊗̂k,s

πs
ℓ2 generated by the

elementary tensors ⊗ken, where {en} is the canonical basis of ℓ2.

For u =
∑N

n=1 αn ⊗k en we have that πs(u) ≤
∑N

n=1 |αn|. Consider
now the polynomial P ∈ P(kℓ2) given by P(x) =

∑N
n=1 sgn(αn)−1xkn,

where sgn(αn) = αn
|αn| . We have

|P(x)| ≤
N∑
n=1

|xn|k ≤
( N∑
n=1

|xn|2
)k/2

= ∥x∥k and |P(en)| = 1.

Hence ∥P∥ = 1 and
πs(u) ≥ |TP(u)| =

∣∣∣∣∣
N∑
n=1

αnP(en)
∣∣∣∣∣ =

N∑
n=1

|αn|,

implying that D is isometric to ℓ1.
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Linearization of homogeneous polynomials

Finally, linearizing the k-homogeneous polynomial Q : ℓ2 →
⊗̂k,s

πs
ℓ2,

Q(x) =
∑∞

n=1 xkn ⊗k en we obtain TQ :
⊗̂k,s

πs
ℓ2 →

⊗̂k,s
πs
ℓ2 satisfying:

• Im(TQ) ⊂ D,
• TQ(⊗ken) = Q(en) = ⊗ken, (i.e., TQ|D = Id)
• ∥TQ∥ = ∥Q∥ = 1.

Thus, D is 1-complemented in
⊗̂k,s

πs
ℓ2.

Let us comment without proof that sometimes the projective
symmetric tensor product of a reflexive space is reflexive. For
instance:⊗̂k,s

πs
ℓp is reflexive for every k < p < ∞.
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