Linearization of non-linear functions II

Verónica Dimant
Lluis Santaló school
Santander, July 2023
Universidad de San Andrés and CONICET, Argentina

Linearization of homogeneous polynomials

A function between Banach spaces $P: X \rightarrow Y$ is a k-homogeneous polynomial if there exists a k-linear mapping $A: X \times \cdots \times X \rightarrow Y$ such that $P(x)=A(x, \ldots, x)$ for $x \in X$.

A k-homogeneous polynomial $P: X \rightarrow Y$ is continuous if and only if there is a constant $C>0$ such that for every $x \in X$,

$$
\|P(x)\| \leq C\|x\|^{k}
$$

For each continuous k-homogeneous polynomial $P: X \rightarrow Y$ we define a norm $\|P\|$ to be the infimum of all constants C satisfying the previous inequality. That is,

$$
\|P\|=\sup \left\{\|P(x)\|: x \in B_{x}\right\}
$$

With this norm, $\mathscr{P}\left({ }^{k} X, Y\right)$ is a Banach space.
There is a linearization procedure for this space through the symmetric projective tensor product.

Linearization of homogeneous polynomials

Inside $\otimes^{k} X$ the span of all elementary symmetric tensors
$\otimes^{k} x=x \otimes \cdots \otimes x$ is the symmetric tensor product denoted by $\otimes^{k, s} X$.
For $\mathbb{K}=\mathbb{C}$, we can restrict to sums instead linear combinations.
Indeed, $\sum_{i=1}^{n} \lambda_{i} \otimes^{k} x_{i}=\sum_{i=1}^{n} \otimes^{k}\left(\lambda_{i}^{1 / k} x_{i}\right)$ and
$\sum_{i=1}^{n} \mid \lambda_{i}\left\|x_{i}\right\|^{k}=\sum_{i=1}^{n}\left\|\lambda_{i}^{1 / k} x_{i}\right\|^{k}$. Analogously, for $\mathbb{K}=\mathbb{R}$, we can just
consider $u=\sum_{i=1}^{n} \epsilon_{i} \otimes^{k} x_{i}$ with $\epsilon_{i}= \pm 1$.
For the sake of simplicity, we will confine ourselves to complex scalars.

We define a norm on $\otimes^{k, s} X$, called the symmetric projective norm:

$$
\pi_{s}(u)=\inf \left\{\sum_{i=1}^{n}\left\|x_{i}\right\|^{k}: u=\sum_{i=1}^{n} \otimes^{k} x_{i}\right\}
$$

This is a norm and satisfies: $\pi_{s}\left(\otimes^{k} x\right)=\|x\|^{k}$ and $\pi_{s}(u) \geq \pi(u)$.

Linearization of homogeneous polynomials

We denote by $\otimes_{\pi_{s}}^{k, s} X$ the k-symmetric tensor product of X endowed with the symmetric projective norm, which is a normed space and its completion by $\widehat{\otimes}_{\pi_{s}}^{k, s} X$.

Ray Ryan in 1980 in his doctoral thesis proved that through this space there is a linearization procedure for $\mathscr{P}\left({ }^{k} X, Y\right)$ with all the properties that we have described.

General linearization procedure

Consider $\mathscr{C}(U, Y)=\{f: U \rightarrow Y$ function of a certain class $\}$, where U is a given type of set, Y is a Banach space and $\mathscr{C}(U, Y)$ results to be a Banach space with a norm denoted by $\|\cdot\|_{\mathscr{C}}$.

Our linearization procedure consists in obtaining a Banach space $\mathscr{G}(U)$ and a canonical mapping $\delta: U \rightarrow \mathscr{G}(U)$ satisfying:

- For each $f \in \mathscr{C}(U, Y)$ there is a linear mapping $T_{f} \in \mathscr{L}(\mathscr{G}(U), Y)$ such that $f=T_{f} \circ \delta$.
- $\delta \in \mathscr{C}(U, \mathscr{G}(U))$ and $\|\delta\|_{\mathscr{C}}=1$.
- The mapping

$$
\begin{aligned}
\mathscr{C}(U, Y) & \rightarrow \mathscr{L}(\mathscr{G}(U), Y) \\
f & \mapsto T_{f}
\end{aligned}
$$

is a linear surjective isometry.

Linearization of homogeneous polynomials

For $\mathscr{P}\left({ }^{k} X, Y\right)=\{P: X \rightarrow Y$ continuous k-homogeneous polynomial $\}$ we have the Banach space $\widehat{\otimes}_{\pi_{\mathrm{s}}}^{k, s} X$ and the mapping $\delta: X \rightarrow \widehat{\otimes}_{\pi_{\mathrm{s}}}^{k, s} X$ given by $\delta(x)=\otimes^{k} x$ satisfying

- For each $P \in \mathscr{P}\left({ }^{k} X, Y\right)$ there is a linear mapping
$T_{P} \in \mathscr{L}\left(\widehat{\bigotimes}_{\pi_{s}}^{k, s} X, Y\right)$ such that $P=T_{P} \circ \delta$. If $u=\sum_{i=1}^{n} \otimes^{k} X_{i}$ then $T_{P}(u)=\sum_{i=1}^{n} P\left(x_{i}\right)$ is well defined and linear. Also, for each representation of $u,\left\|T_{P}(u)\right\| \leq \sum_{i=1}^{n}\|P\|\left\|x_{i}\right\|^{k}$. Hence, $\left\|T_{P}\right\| \leq\|P\|$ and T_{P} extends to the closure with the same norm. \checkmark
- $\delta \in \mathscr{P}\left({ }^{k} X, \widehat{\bigotimes}_{\pi_{\mathrm{s}}}^{k, s} X\right)$ and $\|\delta\|=1$. The mapping δ is a
k-homogeneous polynomial since it is the restriction to the diagonal of the k-linear mapping

$$
\begin{aligned}
X \times \cdots \times X & \rightarrow \widehat{\otimes}_{\pi_{s}}^{k, s} X \\
\left(x_{1}, \ldots, x_{k}\right) \mapsto & \frac{1}{k!} \sum_{\sigma \in S_{k}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(k)} .
\end{aligned}
$$

Also, $\pi_{s}(\delta(x))=\pi_{s}\left(\otimes^{k} x\right)=\|x\|^{k}$, so $\|\delta\|=1 . \checkmark$

Linearization of homogeneous polynomials

- The mapping $\mathscr{P}\left({ }^{k} X, Y\right) \rightarrow \mathscr{L}\left(\widehat{\bigotimes}_{\pi_{s}}^{k, s} X, Y\right)$ given by $P \mapsto T_{P}$ is a linear surjective isometry. It is clear that $P \mapsto T_{P}$ is linear. Also, for each $T \in \mathscr{L}\left(\widehat{\otimes}_{\pi_{s}}^{k, s} X, Y\right)$ we have $T \circ \delta \in \mathscr{P}\left({ }^{k} X, Y\right)$ with $\|T \circ \delta\| \leq\|T\|$. Appealing to the first bullet, the result holds. \checkmark

Thus, we have the commutative diagram and properties:

1. $\left(\widehat{\bigotimes}_{\pi_{\mathrm{s}}}^{k, s} X\right)^{*} \cong \mathscr{P}\left({ }^{k} X\right)$.
2. span $\delta(X)$ is dense in $\widehat{\otimes}_{\pi_{s}}^{k, s} X$.
3. $\widehat{\otimes}_{\pi_{s}}^{k, s} X$ is unique (unless isometric isomorphism).
4. If $\left(P_{i}\right)_{i}$ is a bounded net in $\mathscr{P}\left({ }^{k} X\right)$ and $P \in \mathscr{P}\left({ }^{k} X\right)$ then $T_{P_{i}} \xrightarrow{w^{*}} T_{P}$ if and only if $P_{i}(x) \rightarrow P(x)$ for every $x \in X$.

Linearization of homogeneous polynomials

Recall $\pi_{s}(u) \geq \pi(u)$; let us see that the inequality could be strict.

Example

Let $\left\{e_{n}\right\}$ be the canonical basis of ℓ_{1}. Then,
$u=e_{1} \otimes e_{2}+e_{2} \otimes e_{1} \in \otimes^{2, s} \ell_{1}$ satisfies $\pi(u)=2<4=\pi_{s}(u)$.
Clearly, $\pi(u) \leq\left\|e_{1}\right\|\left\|e_{2}\right\|+\left\|e_{2}\right\|\left\|e_{1}\right\|=2$. Also, let
$B \in \operatorname{Bil}\left(\ell_{1} \times \ell_{1}\right) \cong\left(\ell_{1} \widehat{\otimes}_{\pi} \ell_{1}\right)^{*}$ given by $B(x, y)=\left(x_{1}+x_{2}\right) \cdot\left(y_{1}+y_{2}\right)$.
Then $\|B\|=1$ and

$$
\pi(u) \geq\left|T_{B}(u)\right|=\left|B\left(e_{1}, e_{2}\right)+B\left(e_{2}, e_{1}\right)\right|=2 .
$$

Note that $u=\frac{\otimes^{2}\left(e_{1}+e_{2}\right)-\otimes^{2}\left(e_{1}-e_{2}\right)}{2}$ then $\pi_{s}(u) \leq \frac{\left\|e_{1}+e_{2}\right\|^{2}+\left\|e_{1}-e_{2}\right\|^{2}}{2}=4$.
Now, let $P \in \mathscr{P}\left({ }^{2} \ell_{1}\right) \cong\left(\widehat{\bigotimes}_{\pi_{s}}^{2, s} \ell_{1}\right)^{*}$ given by $P(x)=4 x_{1} x_{2}$. Then, $\|P\|=1$. Indeed, $\left|4 x_{1} x_{2}\right| \leq\left(\left|x_{1}\right|+\left|x_{2}\right|\right)^{2} \leq\|x\|^{2}$ and $P\left(\frac{e_{1}+e_{2}}{2}\right)=1$.
Finally,

$$
\pi_{s}(u) \geq\left|T_{P}(u)\right|=\left|\frac{P\left(e_{1}+e_{2}\right)-P\left(e_{1}-e_{2}\right)}{2}\right|=4
$$

Linearization of homogeneous polynomials

For a set C in a Banach space X we denote by $\Gamma(C)$ the absolute convex hull of C; that is the set of all linear combinations $\sum_{i=1}^{n} a_{i} x_{i}$ with $x_{i} \in C$ for all i and $\sum_{i=1}^{n}\left|a_{i}\right| \leq 1$.

Consequence of Hahn-Banach theorem

If $C \subset \bar{B}_{X}$ is a norming set for X^{*} then $\bar{\Gamma}(C)=\bar{B}_{X}$.

Particular case

$\bar{B}_{\widehat{\mathbb{Q}}_{\pi_{s}}^{1, s} X}=\bar{\Gamma}\left(\delta\left(B_{X}\right)\right)$.
Proof. Since $\delta\left(B_{X}\right) \subset \bar{B}_{\widehat{\mathbb{Q}}_{\pi_{s}}^{k, s} X}$ is a norming set for $\mathscr{P}\left({ }^{k} X\right)$ the result holds.

Linearization of homogeneous polynomials

A k-homogeneous polynomial $P: X \rightarrow Y$ is compact (weakly compact) if $\overline{P\left(B_{X}\right)}$ is a compact (weakly compact) set of Y.

Proposition

The polynomial P is compact (weakly compact) if and only if the linear operator T_{P} is compact (weakly compact).

Proof. Recall

Since $P\left(B_{x}\right) \subset T_{P}\left(B_{\widehat{\otimes}_{\pi_{s}}^{k, s} x}\right)$ the implication (\Leftarrow) is clear.
For (\Rightarrow) we use that $\bar{\Gamma}$ respects compact and weakly compact sets and the chain of equalities

Linearization of homogeneous polynomials

Proposition

X is isomorphic to a complemented subspace of $\widehat{\bigotimes}_{\pi_{s}}^{k, s} X$.
Proof. We prove it for $k=2$. The general case follows by a similar, more involved argument which shows that $\widehat{\bigotimes}_{\pi_{s}}^{k, s} X$ is isomorphic to a complemented subspace of $\widehat{\bigotimes}_{\pi_{s}}^{(k+1), s} X$ [Blasco, Studia Math. (1997)].
Take $x_{0} \in X$ and $x_{0}^{*} \in X^{*}$ such that $x_{0}^{*}\left(x_{0}\right)=1=\left\|x_{0}\right\|=\left\|x_{0}^{*}\right\|$. Let
$j: x \rightarrow \widehat{\bigotimes}_{\pi_{s}}^{2,5} x$ be given by

$$
\begin{aligned}
j(x) & =x \otimes x_{0}+x_{0} \otimes x-x_{0}^{*}(x)\left(\otimes^{2} x_{0}\right) \\
& =\frac{\otimes^{2}\left(x+x_{0}\right)-\otimes^{2}\left(x-x_{0}\right)}{2}-x_{0}^{*}(x)\left(\otimes^{2} x_{0}\right)
\end{aligned}
$$

It is clear that j is linear and $\|j\| \leq 5$.
Now, define a linear mapping $q: \widehat{\otimes}_{\pi_{s}}^{2, s} x \rightarrow x$ by $q\left(\otimes^{2} x\right)=x_{0}^{*}(x) x$. Note that $\|q\|=1$. Indeed, for $u=\sum_{i=1}^{n} \otimes^{2} x_{i}$:

Linearization of homogeneous polynomials

$$
\|q(u)\|=\left\|\sum_{i=1}^{n} x_{0}^{*}\left(x_{i}\right) x_{i}\right\| \leq \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} .
$$

Since this is valid for each representation of u we obtain that $\|q(u)\| \leq \pi_{s}(u)$. Also, $\left\|q\left(\otimes^{2} x_{0}\right)\right\|=\left\|x_{0}\right\|^{2}=\pi_{s}\left(\otimes^{2} x_{0}\right)$.
Finally, we have to show that $q \circ j=I d_{x}$:
$q(j(x))=\frac{x_{0}^{*}\left(x+x_{0}\right)\left(x+x_{0}\right)-x_{0}^{*}\left(x-x_{0}\right)\left(x-x_{0}\right)}{2}-x_{0}^{*}(x) x_{0}^{*}\left(x_{0}\right) x_{0}=x$.
As a consequence of this result we derive that if $\widehat{\otimes}_{\pi_{s}}^{k, s} X$ is reflexive then X should be reflexive. Let us see in the following example that the reverse implication is false.

Linearization of homogeneous polynomials

Example

$\widehat{\bigotimes}_{\pi_{s}}^{k, s} l_{2}$ is not reflexive.
Indeed, $\widehat{\otimes}_{\pi_{5}}^{k, s} \ell_{2}$ contains a copy of ℓ_{1}. Moreover, $\widehat{\otimes}_{\pi_{s}}^{k, s} \ell_{2}$ contains a complemented isometric copy of ℓ_{1}.
Let D be the closed subspace of $\widehat{\bigotimes}_{\pi_{s}}^{k, s} \ell_{2}$ generated by the elementary tensors $\otimes^{k} e_{n}$, where $\left\{e_{n}\right\}$ is the canonical basis of ℓ_{2}. For $u=\sum_{n=1}^{N} \alpha_{n} \otimes^{k} e_{n}$ we have that $\pi_{s}(u) \leq \sum_{n=1}^{N}\left|\alpha_{n}\right|$. Consider now the polynomial $P \in \mathscr{P}\left({ }^{k} \ell_{2}\right)$ given by $P(x)=\sum_{n=1}^{N} \operatorname{sgn}\left(\alpha_{n}\right)^{-1} x_{n}^{k}$, where $\operatorname{sgn}\left(\alpha_{n}\right)=\frac{\alpha_{n}}{\left|\alpha_{n}\right|}$. We have

$$
|P(x)| \leq \sum_{n=1}^{N}\left|x_{n}\right|^{k} \leq\left(\sum_{n=1}^{N}\left|x_{n}\right|^{2}\right)^{k / 2}=\|x\|^{k} \quad \text { and } \quad\left|P\left(e_{n}\right)\right|=1 .
$$

Hence $\|P\|=1$ and

$$
\begin{aligned}
& =1 \text { and } \\
& \pi_{s}(u) \geq\left|T_{P}(u)\right|=\left|\sum_{n=1}^{N} \alpha_{n} P\left(e_{n}\right)\right|=\sum_{n=1}^{N}\left|\alpha_{n}\right|, .
\end{aligned}
$$

implying that D is isometric to ℓ_{1}.

Linearization of homogeneous polynomials

Finally, linearizing the k-homogeneous polynomial $Q: \ell_{2} \rightarrow \widehat{\mathbb{Q}}_{\pi_{5}}^{k, s} \ell_{2}$, $Q(x)=\sum_{n=1}^{\infty} x_{n}^{k} \otimes^{k} e_{n}$ we obtain $T_{Q}: \widehat{\otimes}_{\pi_{5}}^{k, s} l_{2} \rightarrow \widehat{\otimes}_{\pi_{5}}^{k, s} l_{2}$ satisfying:

- $\operatorname{Im}\left(T_{Q}\right) \subset D$,
- $T_{Q}\left(\otimes^{k} e_{n}\right)=Q\left(e_{n}\right)=\otimes^{k} e_{n},\left(\right.$ i.e., $\left.\left.T_{Q}\right|_{D}=I d\right)$
- $\left\|T_{Q}\right\|=\|Q\|=1$.

Thus, D is 1 -complemented in $\widehat{\otimes}_{\pi_{s}}^{k, s} l_{2}$.
Let us comment without proof that sometimes the projective symmetric tensor product of a reflexive space is reflexive. For instance:
$\widehat{\otimes}_{\pi_{s}}^{k, s} \ell_{p}$ is reflexive for every $k<p<\infty$.

