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What this course is about?

In Banach space theory the most prominent class of functions are
the continuous linear mappings.

The main reason is that they preserve the structure of the
underlying Banach spaces.

But they are not the only interesting functions to study...

In this course we will deal with a linearization procedure that allows
us to associate to certain non-linear functions appropriate linear
mappings which retain some of the properties of the original
functions. In this transaction we obtain better behaving functions,
but we have to accept more complex domains in exchange.

2/17



General linearization procedure

Consider C (U, Y) = {f : U→ Y function of a certain class}, where U
is a given type of set, Y is a Banach space and C (U, Y) results to be a
Banach space with a norm denoted by ∥ · ∥C .

Our linearization procedure consists in obtaining a Banach space
G (U) and a canonical mapping δ : U→ G (U) satisfying:

• For each f ∈ C (U, Y) there is a linear mapping Tf ∈ L (G (U), Y)
such that f = Tf ◦ δ.

• δ ∈ C (U,G (U)) and ∥δ∥C = 1.
• The mapping

C (U, Y) → L (G (U), Y)
f 7→ Tf

is a linear surjective isometry.
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General linearization procedure

In this case we thus have the following commutative diagram

U
f //

δ

��

Y

G (U)
Tf

==

with the following properties:

1. G (U)∗ ∼= C (U).
2. span δ(U) is dense in G (U).
3. G (U) is unique (unless isometric isomorphism).
4. If (fi)i is a bounded net in C (U) and f ∈ C (U) then Tfi

w∗

→ Tf if
and only if fi(u) → f (u) for every u ∈ U.

Proof

1. If Y = C, the mapping f 7→ Tf is a linear surjective isometry
between C (U) and G (U)∗. 4/17



General linearization procedure

2. If Tf ∈ G (U)∗ satisfies Tf |span(δ(U)) ≡ 0 then f = Tf ◦ δ ≡ 0 and
hence Tf ≡ 0.

3. Suppose that there is another Banach space V (U) and a
mapping ϵ : U→ V (U) satisfying the same conditions. Since
δ ∈ C (U,G (U)) and ϵ ∈ C (U,V (U)) there are commutative
diagrams

U δ //

ϵ

��

G (U)

V (U)
Lδ

;;
U ϵ //

δ

��

V (U)

G (U)
Tϵ

;;

Then, Lδ ◦ Tϵ ◦ δ = δ meaning that Lδ ◦ Tϵ|span(δ(U)) = Id. By 2.,
Lδ ◦ Tϵ = IdG (U). Analogously, Tϵ ◦ Lδ = IdV (U). Since
∥Tϵ∥ = ∥Lδ∥ = 1 we derive that V (U) and G (U) are isometrically
isomorphic.
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General linearization procedure

4. (⇒) If Tfi
w∗

→ Tf then Tfi(δ(u)) → Tf (δ(u)) for all u ∈ U and so
fi(u) → f (u).
(⇐) If fi(u) → f (u) for all u ∈ U then Tfi(v) → Tf (v) for all
v ∈ span(δ(U)). Also, there is a constant C > 0 such that ∥fi∥ ≤ C
for all i and ∥f∥ ≤ C. Now, given w ∈ G (U) and ε > 0 there is
v ∈ span(δ(U)) such that ∥w − v∥ < ε

3C . For this v there is i0 such
that if i ≥ i0, |Tfi(v)− Tf (v)| ≤ ε

3 . Putting all together we get to

|Tfi(w)− Tf (w)| ≤ |Tfi(w)− Tfi(v)|+ |Tfi(v)− Tf (v)|
+ |Tf (v)− Tf (w)|

< ∥Tfi∥∥w − v∥+ ε

3 + ∥Tf∥∥w − v∥ < ε.
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General linearization procedure

We now present several cases where we can produce such a
linearization procedure. In each of the settings we address some of
the following questions or goals:

• If the set U is contained in or related to a Banach space X, is
there exist a linear inclusion of X into G (U)? If the answer is
affirmative, is this inclusion complemented?

• If the set U is contained in or related to a Banach space X,
which properties of X (separable, reflexive, metric
approximation property, etc) inherits G (U)?

• Produce a good description of the closed unit ball of G (U). Is it
the closed absolute convex hull of δ(U)?

• Identify properties of the functions in C (U, Y) that translate
into similar properties of linear mappings Tf .

7/17



Linearization of bilinear mappings

If X, Y and Z are Banach spaces, a bilinear mapping B : X × Y → Z is
continuous if and only if there is a constant C > 0 such that for
every x ∈ X, y ∈ Y,

∥B(x, y)∥ ≤ C∥x∥∥y∥.

For each continuous bilinear mapping B : X × Y → Z we define a
norm ∥B∥ to be the infimum of all constants C satisfying the
previous inequality. With this norm, Bil(X × Y, Z) is a Banach space.

There is a linearization procedure for this space through the
projective tensor product.

This begins with a classical algebraic scheme: for vector spaces X
and Y the tensor product X ⊗ Y is defined as the vector span of all
the elementary tensors x ⊗ y, for x ∈ X and y ∈ Y.
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Linearization of bilinear mappings

The elementary tensor x ⊗ y means the element of the algebraic
dual of the set of bilinear mappings given by

(x ⊗ y)(B) = B(x, y), for all B : X × Y → K bilinear.

Note that each element u ∈ X ⊗ Y can be written in different ways as
a linear combination of elementary tensors. For instance,
x⊗ y+ (−x)⊗ y = 0 because B(x, y) + B(−x, y) = 0 for every bilinear
mapping B.

Now we want to look at this from an analytic viewpoint. For that we
define a norm on X ⊗ Y, called the projective norm:

π(u) = inf

{ n∑
i=1

∥xi∥∥yi∥ : u =
n∑
i=1

xi ⊗ yi

}
.

This is a norm and satisfies: π(x ⊗ y) = ∥x∥∥y∥.
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Linearization of bilinear mappings

We denote by X ⊗π Y the tensor product of X and Y endowed with
the projective norm, which is a normed space and its completion by
X⊗̂πY.

Alexander Grothendieck in 1953 in his Résumé de la théorie métrique
des produits tensoriels topologiques proved that through this space
there is a linearization procedure for Bil(X × Y, Z) with all the
properties that we have described.
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General linearization procedure

Consider C (U, Y) = {f : U→ Y function of a certain class}, where U
is a given type of set, Y is a Banach space and C (U, Y) results to be a
Banach space with a norm denoted by ∥ · ∥C .

Our linearization procedure consists in obtaining a Banach space
G (U) and a canonical mapping δ : U→ G (U) satisfying:

• For each f ∈ C (U, Y) there is a linear mapping Tf ∈ L (G (U), Y)
such that f = Tf ◦ δ.

• δ ∈ C (U,G (U)) and ∥δ∥C = 1.
• The mapping

C (U, Y) → L (G (U), Y)
f 7→ Tf

is a linear surjective isometry.
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Linearization of bilinear mappings

For Bil(X × Y, Z) = {B : X × Y → Z bilinear and continuous} we have
the Banach space X⊗̂πY and the mapping δ : X × Y → X⊗̂πY given by
δ(x, y) = x ⊗ y satisfying

• For each B ∈ Bil(X × Y, Z) there is a linear mapping
TB ∈ L (X⊗̂πY, Z) such that B = TB ◦ δ. Indeed, if u =

∑n
i=1 xi ⊗ yi

then TB(u) =
∑n

i=1 B(xi, yi) is well defined and linear. Also,
∥TB(u)∥ ≤

∑n
i=1 ∥B∥∥xi∥∥yi∥ for each representation of u. Hence,

∥TB(u)∥ ≤ ∥B∥π(u), so TB is bounded: ∥TB∥ ≤ ∥B∥. ✓
• δ ∈ Bil(X × Y, X⊗̂πY) and ∥δ∥ = 1. It is clear by the definition of

the tensor product that δ is bilinear. Also,
∥δ(x, y)∥ = π(x ⊗ y) = ∥x∥∥y∥, so ∥δ∥ = 1. ✓

• The mapping Bil(X × Y, Z) → L (X⊗̂πY, Z) given by B 7→ TB is a
linear surjective isometry. It is clear from the definition that the
mapping B 7→ TB is linear. Also, for each T ∈ L (X⊗̂πY, Z) we
have T ◦ δ ∈ Bil(X × Y, Z) with ∥T ◦ δ∥ ≤ ∥T∥. Thus, appealing to
the first bullet, the result holds. ✓ 12/17



Linearization of bilinear mappings

Therefore, we have the following commutative diagram

X × Y B //

δ
��

Z

X⊗̂πY
TB

==

and the properties:

1. (X⊗̂πY)∗ ∼= Bil(X × Y).
2. span δ(X × Y) is dense in X⊗̂πY.
3. X⊗̂πY is unique (unless isometric isomorphism).
4. If (Bi)i is a bounded net in Bil(X × Y) and B ∈ Bil(X × Y) then
TBi

w∗

→ TB if and only if Bi(x, y) → B(x, y) for every x ∈ X, y ∈ Y.
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Linearization of bilinear mappings

We present now a couple of results related to this linearization
procedure.

Proposition
X and Y are isometric to 1-complemented subspaces of X⊗̂πY.

Proof. Let y0 ∈ Y with ∥y0∥ = 1 and define ι : X → X⊗̂πY by
ι(x) = x ⊗ y0. It is clear that ι is linear and isometric.

Now, take y∗0 ∈ Y∗ with ∥y∗0∥ = |y∗0(y0)| = 1 and define the bilinear
mapping B : X × Y → X by B(x, y) = x · y∗0(y). Then,
∥B(x, y)∥ ≤ ∥x∥∥y∥ and ∥B(x, y0)∥ = ∥x∥ meaning that ∥B∥ = 1.

Linearizing B we get to TB : X⊗̂πY → X which satisfies ∥TB∥ = 1 and
TB ◦ ι = IdX . This proves the result for X. The proof for Y is
analogous.
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Linearization of bilinear mappings

Recall that a Banach space X has the bounded approximation
property (BAP) if there exists a number C > 0 and a net of finite rank
operators (Tα) such that ∥Tα∥ ≤ C and Tα(x) → x for all x ∈ X.

Proposition
X and Y have the BAP if and only if X⊗̂πY has the BAP.

Proof. (⇐) is clear since complemented subspaces inherit the BAP.

(⇒) Let (Tα) and (Sβ) be nets of finite rank operators
approximating IdX and IdY , respectively, with ∥Tα∥ ≤ CX and
∥Sβ∥ ≤ CY . Let us consider the net (Tα ⊗ Sβ)(α,β) where the index
set (α, β) is ordered canonically and Tα ⊗ Sβ : X⊗̂πY → X⊗̂πY is the
linearization of [(x, y) ∈ X × Y 7→ Tα(x)⊗ Sβ(y) ∈ X⊗̂πY] . It is clear
that Tα ⊗ Sβ are finite rank mappings and ∥Tα ⊗ Sβ∥ ≤ CX · CY .
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Linearization of bilinear mappings

To see that they approximate the identity, it is enough to check
their values in elementary tensors:

π ((Tα ⊗ Sβ)(x ⊗ y)− x ⊗ y) = π ((Tα(x)− x)⊗ Sβ(y) + x ⊗ (Sβ(y)− y))
≤ ∥Tα(x)− x∥CY∥y∥+ ∥x∥∥Sβ(y)− y∥.

Hence, π ((Tα ⊗ Sβ)(x ⊗ y)− x ⊗ y) → 0.

Other simple things:

• X and Y are separable if and only if X⊗̂πY. One implication
follows from the fact that span δ(X × Y) is dense in X⊗̂πY. The
other implication is clear from the contention of X and Y inside
the tensor product.
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Linearization of bilinear mappings

• The image of B is contained in a finite dimensional subspace
(separable subspace) if and only if the range of TB is finite
dimensional (separable). Note that the image of B is contained
in the image of TB. And the other way around again is
consequence of the denseness of span δ(X × Y) in the tensor
product.

• If B is surjective then so is TB. The reverse implication is false.
The first sentence is obvious. For the second, take the bilinear
mapping δ : X × Y → X⊗̂πY which is not surjective and note that
Tδ is the identity mapping Id : X⊗̂πY → X⊗̂πY.
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