Metric embeddings of of Laakso graphs into Banach spaces

Stephen Dilworth, University of South Carolina

July 20, 2023

Publications

- DKS S. J. Dilworth, Denka Kutzarova, and Svetozar Stankov, Metric embeddings of Laakso graphs into Banach spaces, Banach J. Math. Anal. 16 (2022), Paper No. 60, 14 pp.
- DKO1 Stephen J. Dilworth, Denka Kutzarova, and Mikhail I. Ostrovskii, Lipschitz-free spaces on finite metric spaces, Canad. J. Math. 72 (2020), 774-804.
- DKO2 S. J. Dilworth, Denka Kutzarova, and Mikhail I. Ostrovskii, Analysis on Laakso graphs with application to the structure of transportation cost spaces, Positivity 25 (2021), 1403-1435.

Super-reflexive spaces (James (1972))

Theorem (Enflo, 1972)

X is super-reflexive if and only if X is isomorphic to a uniformly convex Banach space.

Remark

- super-reflexive \Rightarrow reflexive
- ℓ_p and $L_p[0, 1]$ are super-reflexive $\Leftrightarrow 1$
- $(\sum_{n\geq 1} \ell_1^n)_2$ is reflexive but not super-reflexive

Theorem (James-Schaffer, 1972, Schaffer-Sundaresan, 1970)

X is super-reflexive if and only if *X* is *J*-convex: $\exists m \ge 2, \varepsilon > 0$ such that $\forall e_1, \dots, e_m, ||e_i|| \le 1$,

$$\min_{1 \leq j \leq m} \|\boldsymbol{e}_1 + \cdots + \boldsymbol{e}_j - \boldsymbol{e}_{j+1} - \cdots - \boldsymbol{e}_m\| < m - \varepsilon.$$

Bilipschitz embeddings of metric spaces

Definition

A metric space *M* bilipschitz embeds in a Banach space *X* with distortion *D* if $\exists f: M \rightarrow X$ s.t.

$$\frac{1}{D}\rho(x,y) \leqslant \|f(x) - f(y)\| \leqslant \rho(x,y) \qquad (x,y \in M).$$

Characterization of super-reflexivity: Binary trees

Definition

For $n \ge 1$, the binary tree $B_n := \{\emptyset\} \cup_{i=1}^n \{0, 1\}^i$ equipped with the shortest path metric.

Theorem (Bourgain, 1986) X is not superreflexive $\Leftrightarrow \exists D \ge 1$ and maps $f_n \colon B_n \to X$ s.t.

$$\frac{d(s,t)}{D} \leqslant \|f_n(s) - f_n(t)\| \leqslant d(s,t),$$

i.e., B_n bilipschitz embeds into X with uniform distortion.

Diamond graphs

- ► The diamond graphs *D_n* are defined recursively:
- \triangleright D_0 is a single edge.
- D_n is obtained from D_{n-1} by replacing each edge by a 'diamond'.
- Equip D_n with the shortest path metric.

Figure: Diamond *D*₂.

Laakso graphs

- The Laakso graphs \mathcal{L}_n are defined recursively:
- \blacktriangleright \mathcal{L}_0 is a single edge.
- *L_n* is obtained from *L_{n-1}* by replacing each edge by a copy
 of *L₁*
- Equip \mathcal{L}_n with the shortest path metric.

Figure: The Laakso graphs \mathcal{L}_1 and \mathcal{L}_2

Figure: The Laakso graph \mathcal{L}_n

Here C, D, E, F, Y, Z are copies of \mathcal{L}_{n-1} .

Characterization of super-reflexivity: diamond and Laakso graphs

Theorem (Ostrovska-Ostrovskii, 2017)

Laakso graphs do not uniformly bilipschitz embed into diamond graphs

Theorem (Johnson-Schechtman, 2009)

Let X be a Banach space. Then X is not superreflexive $\Leftrightarrow \exists D \ge 1$ and maps $f_n \colon D_n \to X$ or $f_n \colon \mathcal{L}_n \to X$ such that

$$\frac{d(s,t)}{D} \leqslant \|f_n(s) - f_n(t)\| \leqslant d(s,t),$$

i.e., D_n and \mathcal{L}_n bilipschitz embed into X with uniform distortion.

Further graph characterizations

Suppose X is not super-reflexive. Let $\varepsilon > 0$

Theorem (Ostrovskii-Randrianantoanina, 2017) The *k*-branching diamond $D_{n,k}$ and Laakso $\mathcal{L}_{n,k}$ graphs bilipschitz embed into X with uniform distortion $8 + \varepsilon$.

Theorem (Swift, 2018)

Bundle graphs generated by a finitely-branching bundle graph bilipschitz embed with distortion independent of the branching number. Parasol graphs embed with distortion $8 + \varepsilon$.

Low distortion embeddings of diamond graphs D_n

Suppose X is not super-reflexive. Let $\varepsilon > 0$

Theorem (folklore)

The binary trees B_n bilipschitz embed into X with uniform distortion $1 + \varepsilon$ (B_n embeds almost isometrically into X).

Theorem (Pisier, 2016)

 D_n bilipschitz embeds into X with uniform distortion $2 + \varepsilon$.

Theorem (Lee and Rhagavendra, 2010)

 D_n bilipschitz embeds into $L_1[0, 1]$ with uniform distortion 4/3.

Low distortion embeddings of Laakso graphs \mathcal{L}_n

Here X is not super-reflexive and $\varepsilon > 0$.

Theorem (DKS, 2022)

 \mathcal{L}_n bilipschitz embed into X with distortion $2 + \varepsilon$.

Theorem (DKS, 2022)

 \mathcal{L}_n bilipschitz embed into $L_1[0, 1]$ with distortion 4/3.

Lower bounds on distortion

Theorem (DKS)

The diamond graph D_2 does not embed into $L_1[0, 1]$ with distortion less than 5/4.

Remark

 \exists simple embedding of D_2 into $L_1[0, 1]$ with distortion 4/3 which may be optimal, but we don't have a proof.

Theorem (DKS)

The Laakso graph \mathcal{L}_2 does not embed into $L_1[0, 1]$ with distortion less than 9/8.

Transportation cost (Lipschitz-free) spaces

Definition

Let (M, ρ) be a finite pointed metric space with distinguished point *O*.

 $Lip_0(M)$ is the space of Lipschitz functions $f: M \to \mathbb{R}$, with f(O) = 0 and norm

$$\|f\|_{Lip} = \sup\{\frac{\|f(x) - f(y)\|}{\rho(x, y)} : x \neq y\}.$$

Theorem (Definition!)

The transportation cost (Lipschitz-free) space TC(M) is isometrically isomorphic to $Lip_0(M)^*$.

Diamond graphs

Definition Let X_0 , Y_0 be *n*-dimensional normed spaces. The Banach-Mazur distance from X_0 to Y_0 is defined by

$$d_{BM}(X_0, Y_0) = \inf\{\|T\| \cdot \|T^{-1}\| \colon T \colon X_0 \to Y_0\}.$$

Theorem (DKO1)

$$\frac{2n+1}{3} \leqslant d_{BM}(\mathsf{TC}(D_n),\ell_1^N) \leqslant 4n+4,$$

Remark $N + 1 = \dim(\mathrm{TC}(D_n)) \simeq 2 \cdot 4^n/3$, so

$$d_{BM}(\mathsf{TC}(D_n),\ell_1^N) \approx n \approx \log(N)$$

*L*₁-distortion

Theorem (Baudier-Gartland-Schlumprecht, 2022) Let $E \subset \ell_1$ with dim E = N. Then

 $d_{BM}(\mathsf{TC}(D_n), E) \geqslant c\sqrt{n}.$

So TC(D_n) does not uniformly linearly embed into ℓ_1 .

Laakso graphs

Theorem (DKO2)

$$\frac{2n+1}{3} \leqslant d_{BM}(\mathsf{TC}(L_n), \ell_1^N) \leqslant ??$$

Questions

Do we have

$$d_{BM}(\mathsf{TC}(L_n),\ell_1^N)\leqslant cn?$$

► Does $TC(L_n)$ uniformly linearly embed into ℓ_1 ?

► In general, is

$$d_{BM}(\mathsf{TC}(M), \ell_1^N) \leqslant c(\log N)^{\alpha}$$

if |M| = N + 1?

Sketch proofs of some of the results

Theorem

Suppose X is not super-reflexive. $\forall \varepsilon > 0 \text{ and } \forall n \ge 1, \exists f_n : \mathcal{L}_n \rightarrow X \text{ s.t. } \forall a, b \in \mathcal{L}_n,$

$$\frac{1}{2}d(a,b)-\varepsilon \leqslant \|f_n(a)-f_n(b)\| \leqslant d(a,b). \tag{1}$$

Since X is not J-convex, $\exists (e_i^n)_{i=1}^{4^n}$ s.t. $||e_i|| \leq 1$ and

$$\min_{1\leqslant j\leqslant 4^n} \|\boldsymbol{e}_1+\cdots+\boldsymbol{e}_j-\boldsymbol{e}_{j+1}-\cdots-\boldsymbol{e}_{4^n}\| \geqslant 4^n-\varepsilon.$$

f_n is of form

$$f_n(a) = \sum_{i=1}^{4^n} (e_i^n)^* (f_n(a)) e_i^n,$$
 (2)

where $(e_i^n)^*(f_n(a)) \in \{0, 1\}$

Figure: The Laakso graph \mathcal{L}_n

Inductive definition

► Let $\rho: \mathcal{L}_{n-1} \to X$ be a 'copy' of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=1}^{4^{n-1}}$. Formally,

$$\rho(a) = \sum_{i=1}^{4^{n-1}} (e_i^{n-1})^* (f_{n-1}(a)) e_i^n.$$

- Let $\theta: \mathcal{L}_{n-1} \to X$ be a copy of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=4^{n-1}+1}^{2\cdot 4^{n-1}}$.
- Let $\phi: \mathcal{L}_{n-1} \to X$ be a copy of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=2\cdot 4^{n-1}+1}^{3\cdot 4^{n-1}}$.
- Let $\sigma: \mathcal{L}_{n-1} \to X$ be a copy of f_{n-1} with $(e_i^{n-1})_{i=1}^{4^{n-1}}$ replaced by $(e_i^n)_{i=3\cdot 4^{n-1}+1}^{4^n}$.

Now we define $f_n : \mathcal{L}_n \to X$ as follows:

$$\begin{pmatrix} \rho(\overline{a}), & a \in Y \\ \nabla^{4^{n-1}} & p \to \gamma(\overline{a}) \end{pmatrix}$$

$$\sum_{i=1\atop i=1}^{4^n} e_i^n + heta(\overline{a}), \qquad a \in C$$

$$f_n(\mathbf{a}) = \begin{cases} \sum_{i=1}^{4^{n-1}} e_i^n + \phi(\overline{\mathbf{a}}), & \mathbf{a} \in D \\ \sum_{i=1}^{2^{4^{n-1}}} e_i^n + \phi(\overline{\mathbf{a}}), & \mathbf{a} \in D \end{cases}$$

$$\sum_{i=1}^{2\cdot 4^{n-1}} e_i^n + \phi(\overline{a}), \qquad a \in E$$

$$\begin{bmatrix} \sum_{i=1}^{4^{n-1}} \boldsymbol{e}_i^n + \sum_{i=2\cdot 4^{n-1}+1}^{3\cdot 4^{n-1}} \boldsymbol{e}_i^n + \theta(\overline{\boldsymbol{a}}), & \boldsymbol{a} \in \boldsymbol{F} \\ \sum_{i=1}^{3\cdot 4^{n-1}} \boldsymbol{e}_i^n + \sigma(\overline{\boldsymbol{a}}), & \boldsymbol{a} \in \boldsymbol{Z}. \end{bmatrix}$$

Check ||(f_n(a) − f_n(b)|| case by case, e.g. a ∈ D, b ∈ E (Case 4 in the paper). Lower estimate for $||f_n(a) - f_n(b)||$ Let $(e_i)_{i=1}^m$ satisfy $||e_i|| \le 1$ and $\min_{1 \le j \le m} ||e_1 + \dots + e_j - e_{j+1} - \dots - e_m|| \ge m - \varepsilon.$

Lemma $\max A < \min B \Rightarrow$

$$\|\sum_{i\in A} \boldsymbol{e}_i - \sum_{i\in B} \boldsymbol{e}_i\| \ge |\boldsymbol{A}| + |\boldsymbol{B}| - \varepsilon.$$

Lemma

 $\max A < \min B \text{ or } \max B < \min A \Rightarrow$

$$\|\sum_{i\in A}\varepsilon_i \boldsymbol{e}_i + \sum_{i\in B} \boldsymbol{e}_i\| \ge |\boldsymbol{B}| - \varepsilon.$$

for all choices of signs $\varepsilon_i = \pm 1$.

Bilipschitz embedding into $L_1[0, 1]$.

Theorem

$$\forall n \ge 1, \exists f_n \colon \mathcal{L}_n \to \mathcal{L}_1[0, 1] \text{ s.t. } \forall a, b \in \mathcal{L}_n,$$

$$\frac{3}{4}d(a, b) \leqslant \|f_n(a) - f_n(b)\|_1 \leqslant d(a, b)$$

Proof.

Similar but uses independent sets to improve 1/2 to 3/4.

٠

Lower bounds on distortion

```
Theorem
Let f: \mathcal{L}_2 \to L_1[0, 1] satisfy
                   d(a,b) \leqslant \|f(a) - f(b)\|_1 \leqslant cd(a,b).
Then c \ge 9/8.
Theorem
Let f: D_2 \rightarrow L_1[0, 1] satisfy
                   d(a,b) \leqslant \|f(a) - f(b)\|_1 \leqslant cd(a,b).
Then c \ge 5/4.
```

Hypermetric and negative type inequalities

Theorem B (Deza-Laurent, 1997)

Let (M, ρ) be a finite metric space that embeds isometrically into $L_1[0, 1]$. $\forall k_i \in \mathbb{Z} \ (1 \le i \le n) \text{ s.t. } \sum_{i=1}^n k_i = 0 \ (negative type inequalities) or \sum_{i=1}^n k_i = 1 \ (hypermetric inequalities),$

$$\sum_{1 \leq i < j \leq n} k_i k_j \rho(x_i, x_j) \leq 0,$$

where x_1, \ldots, x_n are the distinct elements of M.

Figure: Weights *P* (left) and *N* (right) for \mathcal{L}_1

 $P \rightarrow \{C, F\}, N \rightarrow \{D, E\}, \text{zero} \rightarrow \{Y, Z\} \text{ copies of } \mathcal{L}_1 \text{ in } \mathcal{L}_2.$

•
$$\sum_{i=1}^{30} k_i = 0 \Rightarrow$$
 negative type inequality

$$72 = \sum_{i < j, k_i k_j > 0} k_i k_j d(x_i, x_j)$$

$$\leqslant \sum_{i < j, k_i k_j > 0} k_i k_j \| f(x_i) - f(x_j) \|_1$$

$$\leqslant \sum_{i < j, k_i k_j < 0} \| k_i k_j \| \| f(x_i) - f(x_j) \|_1$$

$$\leqslant c \sum_{i < j, k_i k_j < 0} \| k_i k_j \| d(x_i, x_j)$$

$$= 64c.$$

So c ≥ 9/8.