Symplectic structures on Rochberg spaces

Lluís Santaló School: Linear and non-linear analysis in Banach spaces

Wilson A. Cuéllar (Universidade de São Paulo) Joint work with J. Castillo, M. González and R. Pino

17/07/2023 Supported by FAPESP 2016/25574-8; 2019/23669-0

Objects. Exact sequences of Banach spaces

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0,$$

Objects. Exact sequences of Banach spaces

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0, \text{ i.e.,}$$

• The arrows are linear and bounded operators

Objects. Exact sequences of Banach spaces

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0, \text{ i.e.,}$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

Objects. Exact sequences of Banach spaces

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0, \text{ i.e.,}$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

The middle space X is said to be a twisted sum of Y and Z.

Objects. Exact sequences of Banach spaces

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0, \text{ i.e.,}$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

The middle space X is said to be a twisted sum of Y and Z. Examples.

$$0 \longrightarrow Y \xrightarrow{i} Y \oplus Z \xrightarrow{\pi} Z \longrightarrow 0.$$

Objects. Exact sequences of Banach spaces

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0, \text{ i.e.,}$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

The middle space X is said to be a twisted sum of Y and Z. Examples.

$$0 \longrightarrow Y \xrightarrow{i} Y \oplus Z \xrightarrow{\pi} Z \longrightarrow 0.$$

Phillips [1940] The exact sequence

 $0 \longrightarrow c_0 \xrightarrow{i} \ell_{\infty} \xrightarrow{q} \ell_{\infty}/c_0 \longrightarrow 0 \text{ is not trivial}$

Palais' Problem. If Y and X/Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

Palais' Problem. If Y and X/Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

Enflo, Lindenstrauss and Pisier [1975] There does exist a nontrivial twisted sum of Hilbert spaces.

$$0 \longrightarrow \ell_2 \longrightarrow ELP \longrightarrow \ell_2 \longrightarrow 0$$

Palais' Problem. If Y and X/Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

Enflo, Lindenstrauss and Pisier [1975] There does exist a nontrivial twisted sum of Hilbert spaces.

$$0 \longrightarrow \ell_2 \longrightarrow ELP \longrightarrow \ell_2 \longrightarrow 0$$

Another solution to this problem was given by Kalton and Peck [1979]

Kalton-Peck theory

Kalton-Peck [1979] Every exact sequence

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0$$

is equivalent to one of the form

$$0 \longrightarrow Y \xrightarrow{i} (Y \times Z, \|\cdot\|_{\Omega}) \xrightarrow{\pi} Z \longrightarrow 0,$$

where

Kalton-Peck theory

Kalton-Peck [1979] Every exact sequence

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0$$

is equivalent to one of the form

$$0 \longrightarrow Y \xrightarrow{i} (Y \times Z, \|\cdot\|_{\Omega}) \xrightarrow{\pi} Z \longrightarrow 0,$$

where

• $\Omega: Z \to Y$ is homogeneous and there is K > 0 such that for all $z_1, z_2 \in Z$,

$$\|\Omega(z_1+z_2) - \Omega(z_1) - \Omega(z_2)\| \le K(\|z_1\| + \|z_2\|).$$

• $||(y,z)||_{\Omega} = ||y - \Omega z||_{Y} + ||z||_{Z}$

Kalton-Peck theory

Kalton-Peck [1979] Every exact sequence

$$0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0$$

is equivalent to one of the form

$$0 \longrightarrow Y \xrightarrow{i} (Y \times Z, \|\cdot\|_{\Omega}) \xrightarrow{\pi} Z \longrightarrow 0,$$

where

• $\Omega: Z \to Y$ is homogeneous and there is K > 0 such that for all $z_1, z_2 \in Z$,

$$\|\Omega(z_1+z_2) - \Omega(z_1) - \Omega(z_2)\| \le K(\|z_1\| + \|z_2\|).$$

•
$$||(y,z)||_{\Omega} = ||y - \Omega z||_{Y} + ||z||_{Z}$$

 Ω is trivial if it may be written as $\Omega = B + L$.

Proposition. Let $\Omega_0: Z_0 \to Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_0 admits a unique quasi-linear extension $\Omega: Z \to Y$.

Proposition. Let $\Omega_0 : Z_0 \to Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_0 admits a unique quasi-linear extension $\Omega : Z \to Y$.

Example. Kalton-Peck map $\Omega_2: c_{00} \rightarrow \ell_2$, defined by

$$\Omega_2(x) = x \log \frac{|x|}{\|x\|_2}$$

Proposition. Let $\Omega_0 : Z_0 \to Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_0 admits a unique quasi-linear extension $\Omega : Z \to Y$.

Example. Kalton-Peck map $\Omega_2: c_{00} \to \ell_2$, defined by

$$\Omega_2(x) = x \log \frac{|x|}{\|x\|_2}$$
$$\Omega_2(x)(n) = x(n) \log \frac{|x(n)|}{\|x\|_2}$$

Proposition. Let $\Omega_0 : Z_0 \to Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_0 admits a unique quasi-linear extension $\Omega : Z \to Y$.

Example. Kalton-Peck map $\Omega_2: c_{00} \rightarrow \ell_2$, defined by

$$\Omega_2(x) = x \log \frac{|x|}{\|x\|_2}$$
$$\Omega_2(x)(n) = x(n) \log \frac{|x(n)|}{\|x\|_2}$$

Kalton-Peck space $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$

$$0 \longrightarrow \ell_2 \longrightarrow Z_2 \longrightarrow \ell_2 \longrightarrow 0.$$

Proposition. Let $\Omega_0 : Z_0 \to Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_0 admits a unique quasi-linear extension $\Omega : Z \to Y$.

Example. Kalton-Peck map $\Omega_2: c_{00} \rightarrow \ell_2$, defined by

$$\Omega_2(x) = x \log \frac{|x|}{\|x\|_2}$$
$$\Omega_2(x)(n) = x(n) \log \frac{|x(n)|}{\|x\|_2}$$

Kalton-Peck space $Z_2 = \ell_2 \oplus_{\Omega_2} \ell_2$

$$0 \longrightarrow \ell_2 \longrightarrow Z_2 \longrightarrow \ell_2 \longrightarrow 0.$$

Kalton-Peck [1979] The quotient map $Z_2 \rightarrow \ell_2$ is strictly singular.

Definition. A symplectic form on a real Banach space X is a continuous bilinear map $\omega: X \times X \to \mathbb{R}$ such that

Definition. A symplectic form on a real Banach space X is a continuous bilinear map $\omega: X \times X \to \mathbb{R}$ such that

1.
$$\omega(x,y) = -\omega(y,x)$$

2. $L_{\omega}: X \to X^*$ is an onto isomorphism, where

$$L_{\omega}(x)(y) = \omega(x, y).$$

 (X,ω) symplectic Banach space.

Definition. A symplectic form on a real Banach space X is a continuous bilinear map $\omega : X \times X \to \mathbb{R}$ such that

1. $\omega(x,y) = -\omega(y,x)$ 2. $L_{\omega}: X \to X^*$ is an onto isomorphism, where

$$L_{\omega}(x)(y) = \omega(x, y).$$

 (X,ω) symplectic Banach space.

Remark.

- 1. $L^*_{\omega}(x) = -L_{\omega}(x)$, for every $x \in X \subseteq X^{**}$.
- 2. Every symplectic Banach space is reflexive.

1.
$$X = \mathbb{R}^2$$
 with $\omega((x,y),(x',y')) = xy' - yx'$

1.
$$X = \mathbb{R}^2$$
 with $\omega((x, y), (x', y')) = xy' - yx'$
2. $X = \mathbb{R}^{2n}$ with $\omega((x, y), (x', y')) = \langle (x, y), J(x', y') \rangle$, where $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

1.
$$X = \mathbb{R}^2$$
 with $\omega((x, y), (x', y')) = xy' - yx'$
2. $X = \mathbb{R}^{2n}$ with $\omega((x, y), (x', y')) = \langle (x, y), J(x', y') \rangle$, where
 $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
3. $X = \ell_2$ with $\omega(x, y) = \langle x, \sigma y \rangle$, where
 $\sigma(x_1, x_2, x_3, x_4, \ldots) = (x_2, -x_1, x_4, -x_3, \ldots).$

1.
$$X = \mathbb{R}^2$$
 with $\omega((x, y), (x', y')) = xy' - yx'$
2. $X = \mathbb{R}^{2n}$ with $\omega((x, y), (x', y')) = \langle (x, y), J(x', y') \rangle$, where
 $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
3. $X = \ell_2$ with $\omega(x, y) = \langle x, \sigma y \rangle$, where
 $\sigma(x_1, x_2, x_3, x_4, \ldots) = (x_2, -x_1, x_4, -x_3, \ldots).$

4. Trivial symplectic structure. $X = Y \oplus Y^*$, Y reflexive

$$\omega((y, y^*), (z, z^*)) = z^*(y) - y^*(z).$$

1.
$$X = \mathbb{R}^2$$
 with $\omega((x, y), (x', y')) = xy' - yx'$
2. $X = \mathbb{R}^{2n}$ with $\omega((x, y), (x', y')) = \langle (x, y), J(x', y') \rangle$, where
 $J = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
3. $X = \ell_2$ with $\omega(x, y) = \langle x, \sigma y \rangle$, where
 $\sigma(x_1, x_2, x_3, x_4, ...) = (x_2, -x_1, x_4, -x_3, ...).$

4. Trivial symplectic structure. $X = Y \oplus Y^*$, Y reflexive

$$\omega((y, y^*), (z, z^*)) = z^*(y) - y^*(z).$$

5. Kalton-Peck space Z_2

$$0 \longrightarrow \ell_2 \longrightarrow Z_2 \longrightarrow \ell_2 \longrightarrow 0.$$

$$\omega((x,y), (x',y')) = \langle x, y' \rangle - \langle y, x' \rangle$$

Equivalence

Definition

Two symplectic spaces (X_1, ω_1) and (X_2, ω_2) are equivalent if there is an isomorphism $T: X_1 \to X_2$ such that

$$\omega_2(Tx,Ty) = \omega_1(x,y).$$

Equivalence

Definition

Two symplectic spaces (X_1, ω_1) and (X_2, ω_2) are equivalent if there is an isomorphism $T: X_1 \to X_2$ such that

$$\omega_2(Tx,Ty) = \omega_1(x,y).$$

Weinstein [1971] Every symplectic structure on a Hilbert space is trivial.

Equivalence

Definition

Two symplectic spaces (X_1, ω_1) and (X_2, ω_2) are equivalent if there is an isomorphism $T: X_1 \to X_2$ such that

$$\omega_2(Tx,Ty) = \omega_1(x,y).$$

Weinstein [1971] Every symplectic structure on a Hilbert space is trivial.

Kalton-Swanson [1982] (Z_2, ω) is not trivial.

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \to \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_1 to ℓ_1 . Then for every $p \in (1, \infty)$ we have that T is bounded from ℓ_p to ℓ_p and

$$||T: \ell_p \to \ell_p|| \le ||T: \ell_\infty \to \ell_\infty||^{1-\frac{1}{p}} ||T: \ell_1 \to \ell_1||^{\frac{1}{p}}$$

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \to \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_1 to ℓ_1 . Then for every $p \in (1, \infty)$ we have that T is bounded from ℓ_p to ℓ_p and

 $\|T: \ell_p \to \ell_p\| \le \|T: \ell_{\infty} \to \ell_{\infty}\|^{1-\frac{1}{p}} \|T: \ell_1 \to \ell_1\|^{\frac{1}{p}}$ Notation. $S = \{z \in \mathbb{C} : 0 < \Re(z) < 1\}$

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \to \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_1 to ℓ_1 . Then for every $p \in (1, \infty)$ we have that T is bounded from ℓ_p to ℓ_p and

$$\begin{split} \|T:\ell_p\to\ell_p\|\leq \|T:\ell_\infty\to\ell_\infty\|^{1-\frac{1}{p}}\|T:\ell_1\to\ell_1\|^{\frac{1}{p}} \\ \text{Notation.} \ S=\{z\in\mathbb{C}\,:\,0<\Re(z)<1\} \end{split}$$

Riesz-Thorin: Let $T: \ell_{\infty} \to \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_1 to ℓ_1 . Then for every $p \in (1, \infty)$ we have that T is bounded from ℓ_p to ℓ_p and

$$\|T:\ell_p \to \ell_p\| \le \|T:\ell_\infty \to \ell_\infty\|^{1-\frac{1}{p}} \|T:\ell_1 \to \ell_1\|^{\frac{1}{p}}$$

Notation. $S = \{z \in \mathbb{C} : 0 < \Re(z) < 1\}$

1.
$$f$$
 is analytic on S
2. $f(it) \in \ell_{\infty}$ and $f(1+it) \in \ell_1$ for every $t \in \mathbb{R}$.
3. $t \mapsto f(j+it)$ is continuous and bounded $(j = 0, 1)$
 $||f|| = \max \left\{ \sup_{t \in \mathbb{R}} ||f(it)||_{\ell_{\infty}}, \sup_{t \in \mathbb{R}} ||f(1+it)||_{\ell_1} \right\} < \infty$

Riesz-Thorin: Let $T: \ell_{\infty} \to \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_1 to ℓ_1 . Then for every $p \in (1, \infty)$ we have that T is bounded from ℓ_p to ℓ_p and

$$||T: \ell_p \to \ell_p|| \le ||T: \ell_\infty \to \ell_\infty ||^{1-\frac{1}{p}} ||T: \ell_1 \to \ell_1 ||^{\frac{1}{p}}$$

Notation. $S = \{z \in \mathbb{C} : 0 < \Re(z) < 1\}$

1.
$$f$$
 is analytic on S
2. $f(it) \in \ell_{\infty}$ and $f(1+it) \in \ell_1$ for every $t \in \mathbb{R}$.
3. $t \mapsto f(j+it)$ is continuous and bounded $(j = 0, 1)$
 $\|f\| = \max\left\{\sup_{t \in \mathbb{R}} \|f(it)\|_{\ell_{\infty}}, \sup_{t \in \mathbb{R}} \|f(1+it)\|_{\ell_1}\right\} < \infty$
For $0 < \theta < 1$, the complex interpolation space X_{θ} is defined as
 $X_{\theta} = \{f(\theta) : f \in \mathcal{F}\},$

Riesz-Thorin: Let $T: \ell_{\infty} \to \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_1 to ℓ_1 . Then for every $p \in (1, \infty)$ we have that T is bounded from ℓ_p to ℓ_p and

$$||T: \ell_p \to \ell_p|| \le ||T: \ell_\infty \to \ell_\infty ||^{1-\frac{1}{p}} ||T: \ell_1 \to \ell_1 ||^{\frac{1}{p}}$$

Notation. $S = \{z \in \mathbb{C} : 0 < \Re(z) < 1\}$

1.
$$f$$
 is analytic on S
2. $f(it) \in \ell_{\infty}$ and $f(1+it) \in \ell_1$ for every $t \in \mathbb{R}$.
3. $t \mapsto f(j+it)$ is continuous and bounded $(j = 0, 1)$
 $\|f\| = \max\left\{\sup_{t \in \mathbb{R}} \|f(it)\|_{\ell_{\infty}}, \sup_{t \in \mathbb{R}} \|f(1+it)\|_{\ell_1}\right\} < \infty$
For $0 < \theta < 1$, the complex interpolation space X_{θ} is defined as
 $X_{\theta} = \{f(\theta) : f \in \mathcal{F}\}, \|x\|_{X_{\theta}} = \inf\{\|f\|_{\mathcal{F}} : f \in \mathcal{F}, f(\theta) = x\}$

Example.
$$X_{\theta} = \ell_p$$
 for $p = 1/\theta$.

Example. $X_{\theta} = \ell_p$ for $p = 1/\theta$. Derived space. $dX_{\theta} = \{(f'(\theta), f(\theta)), f \in \mathcal{F}(\overline{X})\}$

$$||(x,y)||_{dX_{\theta}} = \inf\{||f|| : f'(\theta) = x, f(\theta) = y\}$$

Example. $X_{\theta} = \ell_p$ for $p = 1/\theta$. Derived space. $dX_{\theta} = \{(f'(\theta), f(\theta)), f \in \mathcal{F}(\overline{X})\}$ $\|(x, y)\|_{dX_{\theta}} = \inf\{\|f\| : f'(\theta) = x, f(\theta) = y\}$

Rochberg and Weiss [1983] There is a short exact sequence

$$0 \longrightarrow X_{\theta} \longrightarrow dX_{\theta} \longrightarrow X_{\theta} \longrightarrow 0.$$

Example.
$$X_{\theta} = \ell_p$$
 for $p = 1/\theta$.
Derived space. $dX_{\theta} = \{(f'(\theta), f(\theta)), f \in \mathcal{F}(\overline{X})\}$
$$\|(x, y)\|_{dX_{\theta}} = \inf\{\|f\| : f'(\theta) = x, f(\theta) = y\}$$

Rochberg and Weiss [1983] There is a short exact sequence

$$0 \longrightarrow X_{\theta} \longrightarrow dX_{\theta} \longrightarrow X_{\theta} \longrightarrow 0.$$

Example The Kalton-Peck space Z_2 can be obtained as a derived space: $\ell_2 = (\ell_{\infty}, \ell_1)_{1/2}$,

 $Z_2 = d\ell_2$

Proposition. The map $\delta_{\theta}^n : \mathcal{F} \to \ell_{\infty}$, evaluation of the *n*-th derivate at θ , is bounded for all $0 < \theta < 1$ and all $n \in \mathbb{N}$.

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \to \ell_{\infty}$, evaluation of the *n*-th derivate at θ , is bounded for all $0 < \theta < 1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]

$$\label{eq:stars} \begin{split} \mathfrak{R}_{\theta}^{(n)} &= \{(x_{n-1},...,x_1,x_0) \in \ell_{\infty}^n \colon x_i = \frac{f^{(i)}(\theta)}{i!}, \text{for some } f \in \\ \mathcal{F}, \text{and all } 0 \leq i \leq n-1 \} \text{ equipped with the canonical quotient norm.} \end{split}$$

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \to \ell_{\infty}$, evaluation of the *n*-th derivate at θ , is bounded for all $0 < \theta < 1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]

$$\label{eq:stars} \begin{split} \mathfrak{R}_{\theta}^{(n)} &= \{(x_{n-1},...,x_1,x_0) \in \ell_{\infty}^n \colon x_i = \frac{f^{(i)}(\theta)}{i!}, \text{for some } f \in \\ \mathcal{F}, \text{and all } 0 \leq i \leq n-1 \} \text{ equipped with the canonical quotient norm.} \end{split}$$

Remark. $\mathfrak{R}_{\theta}^{(n)}$ is isometric to $\mathcal{F} / \bigcap_{i < n} \ker \delta_{\theta}^{i}$

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \to \ell_{\infty}$, evaluation of the *n*-th derivate at θ , is bounded for all $0 < \theta < 1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]

$$\begin{split} \mathfrak{R}_{\theta}^{(n)} &= \{(x_{n-1},...,x_1,x_0) \in \ell_{\infty}^n \colon x_i = \frac{f^{(i)}(\theta)}{i!}, \text{for some } f \in \\ \mathcal{F}, \text{and all } 0 \leq i \leq n-1 \} \text{ equipped with the canonical quotient norm.} \end{split}$$

Remark. $\mathfrak{R}_{\theta}^{(n)}$ is isometric to $\mathcal{F} / \bigcap_{i < n} \ker \delta_{\theta}^{i}$

Cabello - Castillo - Kalton [2015] The following sequence is exact

$$0 \longrightarrow \mathfrak{R}_{\theta}^{(n)} \xrightarrow{i} \mathfrak{R}_{\theta}^{(n+k)} \xrightarrow{\pi} \mathfrak{R}_{\theta}^{(k)} \longrightarrow 0,$$

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \to \ell_{\infty}$, evaluation of the *n*-th derivate at θ , is bounded for all $0 < \theta < 1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]

$$\label{eq:stars} \begin{split} \mathfrak{R}_{\theta}^{(n)} &= \{(x_{n-1},...,x_1,x_0) \in \ell_{\infty}^n \colon x_i = \frac{f^{(i)}(\theta)}{i!}, \text{for some } f \in \\ \mathcal{F}, \text{and all } 0 \leq i \leq n-1 \} \text{ equipped with the canonical quotient norm.} \end{split}$$

Remark. $\mathfrak{R}^{(n)}_{\theta}$ is isometric to $\mathcal{F} / \bigcap_{i < n} \ker \delta^i_{\theta}$

Cabello - Castillo - Kalton [2015] The following sequence is exact

$$0 \longrightarrow \mathfrak{R}_{\theta}^{(n)} \xrightarrow{i} \mathfrak{R}_{\theta}^{(n+k)} \xrightarrow{\pi} \mathfrak{R}_{\theta}^{(k)} \longrightarrow 0,$$

where $i(x_{n-1}, \ldots, x_0) = (x_{n-1}, \ldots, x_0, 0, \ldots, 0)$ and $\pi(x_{m+n-1}, \ldots, x_{k-1}, \ldots, x_0) = (x_{k-1}, \ldots, x_0).$ Notation. $\mathfrak{R}^{(n)} := \mathfrak{R}^{(n)}_{\frac{1}{2}}$

Proposition [CCGP] $\mathfrak{R}^{(n)}$ is symplectic for every $n \geq 1$.

Notation. $\mathfrak{R}^{(n)} := \mathfrak{R}^{(n)}_{\frac{1}{2}}$

Proposition [CCGP] $\Re^{(n)}$ is symplectic for every $n \ge 1$.

Cabello - Castillo - Correa [2019] $\omega_n:\mathfrak{R}^{(n)} imes\mathfrak{R}^{(n)} o\mathbb{R}$ given by

$$\omega_n((x_{n-1},\ldots,x_0),(y_{n-1},\ldots,y_0)) = \sum_{i+j=n-1} (-1)^i \langle x_i, y_j \rangle.$$

induces an isomorphism of $R^{(n)}$ onto its dual.

Notation. $\mathfrak{R}^{(n)} := \mathfrak{R}^{(n)}_{\frac{1}{2}}$

Proposition [CCGP] $\Re^{(n)}$ is symplectic for every $n \ge 1$.

Cabello - Castillo - Correa [2019] $\omega_n:\mathfrak{R}^{(n)} imes\mathfrak{R}^{(n)} o\mathbb{R}$ given by

$$\omega_n((x_{n-1},\ldots,x_0),(y_{n-1},\ldots,y_0)) = \sum_{i+j=n-1} (-1)^i \langle x_i, y_j \rangle.$$

induces an isomorphism of $R^{(n)}$ onto its dual.

For the odd case, let $\sigma(x) = (-x_2, x_1, -x_4, x_3, ...)$ on ℓ_2 . The induced diagonal operator τ_{σ} is bounded on $\Re^{(n)}$.

$$\overline{\omega_n}\big((x_{n-1},\ldots,x_0),(y_{n-1},\ldots,y_0)\big) := \\ \omega_n\big((x_{n-1},\ldots,x_0),\tau_\sigma(y_{n-1},\ldots,y_0)\big) = \sum_{i+j=n-1}(-1)^i \langle x_i,\sigma y_j \rangle.$$

Proposition. An operator $\tau : \mathfrak{R}^{(n)} \to X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{|E}$ is an isomorphism.

Proposition. An operator $\tau : \mathfrak{R}^{(n)} \to X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{|E}$ is an isomorphism.

The proof follows arguments of Kalton [82] and Castillo -Correa-Ferenczi- González [21]

• Cabello - Castillo - Kalton [2015] The exact sequence $0 \longrightarrow \ell_2 \xrightarrow{i} \mathfrak{R}^{(n)} \xrightarrow{\pi} \mathfrak{R}^{(n-1)} \longrightarrow 0$ has singular quotient map. **Proposition.** An operator $\tau : \mathfrak{R}^{(n)} \to X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{|E}$ is an isomorphism.

The proof follows arguments of Kalton [82] and Castillo -Correa-Ferenczi- González [21]

• Cabello - Castillo - Kalton [2015] The exact sequence $0 \xrightarrow{i} \mathfrak{R}^{(n)} \xrightarrow{\pi} \mathfrak{R}^{(n-1)} \longrightarrow 0 \text{ has}$

 $0 \longrightarrow \ell_2 \longrightarrow \mathfrak{R}^{(n)} \longrightarrow \mathfrak{R}^{(n-1)} \longrightarrow 0$ has singular quotient map.

•
$$\tau : \mathfrak{R}^{(n)} \to X \text{ is } s.s \iff \tau_{|\ell_2} \text{ is } s.s$$

Proposition. An operator $\tau : \mathfrak{R}^{(n)} \to X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{|E}$ is an isomorphism.

The proof follows arguments of Kalton [82] and Castillo -Correa-Ferenczi- González [21]

• Cabello - Castillo - Kalton [2015] The exact sequence

- $\tau: \mathfrak{R}^{(n)} \to X \text{ is } s.s \iff \tau_{|\ell_2} \text{ is } s.s$
- Let τ be a non-s.s operator. WLOG we can assume that $\tau_{|\ell_2}$ is an embedding.

$$\begin{array}{c} \ell_2 \\ \downarrow^i \\ \mathfrak{R}^{(n)} \xrightarrow{(\tau, \mathbf{id})} X \oplus \mathfrak{R}^{(n)} \longrightarrow X \\ \downarrow^{\pi} \\ \mathfrak{R}^{(n-1)} \end{array}$$

Operators on Rochberg spaces

$$\begin{array}{c} \ell_2 \\ \downarrow^i \\ \mathfrak{R}^{(n)} \xrightarrow{(\tau, \mathbf{id})} X \oplus \mathfrak{R}^{(n)} \longrightarrow X \\ \downarrow^{\pi} & \downarrow^Q & \parallel \\ \mathfrak{R}^{(n-1)} \longrightarrow PO \longrightarrow X \end{array}$$

Operators on Rochberg spaces

- $Q(\tau, id)$ is s.s since it factors through π .
- $Q(\tau, id) = Q(\tau, 0) + Q(0, id).$
- $Q(0, \mathbf{id})$ is an embedding.
- $Q(\tau, 0)$ is a upper semi-Fredholm.
- τ is an isomorphism on some finite codimensional subspace of $\Re^{(n)}$.

Theorem [CCGP] Let $T \in \mathcal{L}(\mathfrak{R}^{(n)})$. If T^+T is strictly singular then T is strictly singular.

Theorem [CCGP] Let $T \in \mathcal{L}(\mathfrak{R}^{(n)})$. If T^+T is strictly singular then T is strictly singular.

The symplectic dual T^+ is defined as

$$\omega_n(T^+x,y) = \omega_n(x,Ty)$$

Theorem [CCGP] Let $T \in \mathcal{L}(\mathfrak{R}^{(n)})$. If T^+T is strictly singular then T is strictly singular.

The symplectic dual T^+ is defined as

$$\omega_n(T^+x, y) = \omega_n(x, Ty)$$

Theorem [CCGP] $\Re^{(n)}$ is symplectic non-trivial for every n > 1.

Gracias!