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Exact sequences of Banach spaces

Objects. Exact sequences of Banach spaces

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0,

i.e.,

• The arrows are linear and bounded operators

• The kernel of each arrow equals the image of the preceding

one.

The middle space X is said to be a twisted sum of Y and Z.

Examples.

0 −−−−→ Y
i−−−−→ Y ⊕ Z

π−−−−→ Z −−−−→ 0.

Phillips [1940] The exact sequence

0 −−−−→ c0
i−−−−→ ℓ∞

q−−−−→ ℓ∞/c0 −−−−→ 0 is not trivial
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3BSP

Palais’ Problem. If Y and X/Y are isomorphic to a Hilbert

space, has X to be isomorphic to a Hilbert space?

Enflo, Lindenstrauss and Pisier [1975] There does exist a nontrivial

twisted sum of Hilbert spaces.

0 −−−−→ ℓ2 −−−−→ ELP −−−−→ ℓ2 −−−−→ 0

Another solution to this problem was given by Kalton and Peck

[1979]
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Kalton-Peck theory

Kalton-Peck [1979] Every exact sequence

0 −−−−→ Y
j−−−−→ X

q−−−−→ Z −−−−→ 0

is equivalent to one of the form

0 −−−−→ Y
i−−−−→ (Y × Z, ∥ · ∥Ω)

π−−−−→ Z −−−−→ 0,

where

• Ω : Z → Y is homogeneous and there is K > 0 such that for

all z1, z2 ∈ Z,

∥Ω(z1 + z2)− Ω(z1)− Ω(z2)∥ ≤ K(∥z1∥+ ∥z2∥).

• ∥(y, z)∥Ω = ∥y − Ωz∥Y + ∥z∥Z

Ω is trivial if it may be written as Ω = B + L.
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Examples

Proposition. Let Ω0 : Z0 → Y be a quasi-linear map defined on a

dense subspace of Z. Then Ω0 admits a unique quasi-linear

extension Ω : Z → Y .

Example. Kalton-Peck map Ω2 : c00 → ℓ2, defined by

Ω2(x) = x log
|x|
∥x∥2

Ω2(x)(n) = x(n) log
|x(n)|
∥x∥2

Kalton-Peck space Z2 = ℓ2 ⊕Ω2 ℓ2

0 −−−−→ ℓ2 −−−−→ Z2 −−−−→ ℓ2 −−−−→ 0.

Kalton-Peck [1979] The quotient map Z2 → ℓ2 is strictly singular.
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Symplectic structures

Definition. A symplectic form on a real Banach space X is a

continuous bilinear map ω : X ×X → R such that

1. ω(x, y) = −ω(y, x)
2. Lω : X → X∗ is an onto isomorphism, where

Lω(x)(y) = ω(x, y).

(X,ω) symplectic Banach space.

Remark.

1. L∗
ω(x) = −Lω(x), for every x ∈ X ⊆ X∗∗.

2. Every symplectic Banach space is reflexive.
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Symplectic Banach spaces (Examples)

1. X = R2 with ω((x, y), (x′, y′)) = xy′ − yx′

2. X = R2n with ω((x, y), (x′, y′)) = ⟨(x, y), J(x′, y′)⟩, where

J =

[
0 1

−1 0

]
3. X = ℓ2 with ω(x, y) = ⟨x, σy⟩, where

σ(x1, x2, x3, x4, . . .) = (x2,−x1, x4,−x3, . . .).
4. Trivial symplectic structure. X = Y ⊕ Y ∗, Y reflexive

ω((y, y∗), (z, z∗)) = z∗(y)− y∗(z).

5. Kalton-Peck space Z2

0 −−−−→ ℓ2 −−−−→ Z2 −−−−→ ℓ2 −−−−→ 0.

ω((x, y), (x′, y′)) = ⟨x, y′⟩ − ⟨y, x′⟩
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Equivalence

Definition
Two symplectic spaces (X1, ω1) and (X2, ω2) are equivalent if

there is an isomorphism T : X1 → X2 such that

ω2(Tx, Ty) = ω1(x, y).

⇐⇒ Lω1 = T ∗Lω2T

X1
T−−−−→ X2yLω1

yLω2

X∗
1

T ∗
←−−−− X∗

2

Weinstein [1971] Every symplectic structure on a Hilbert space is

trivial.

Kalton-Swanson [1982] (Z2, ω) is not trivial.
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Complex method of interpolation

Riesz-Thorin: Let T : ℓ∞ → ℓ∞ be a bounded operator which is

also bounded as a map from ℓ1 to ℓ1. Then for every p ∈ (1,∞)

we have that T is bounded from ℓp to ℓp and

∥T : ℓp → ℓp∥ ≤ ∥T : ℓ∞ → ℓ∞∥1−
1
p ∥T : ℓ1 → ℓ1∥

1
p

Notation. S = {z ∈ C : 0 < ℜ(z) < 1}

F the space of functions f : S → ℓ∞ such that

1. f is analytic on S

2. f(it) ∈ ℓ∞ and f(1 + it) ∈ ℓ1 for every t ∈ R.
3. t 7→ f(j + it) is continuous and bounded (j = 0, 1)

∥f∥ = max

{
sup
t∈R
∥f(it)∥ℓ∞ , sup

t∈R
∥f(1 + it)∥ℓ1

}
<∞

For 0 < θ < 1, the complex interpolation space Xθ is defined as

Xθ = {f(θ) : f ∈ F}, ∥x∥Xθ
= inf{∥f∥F : f ∈ F , f(θ) = x}
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Xθ = {f(θ) : f ∈ F}, ∥x∥Xθ
= inf{∥f∥F : f ∈ F , f(θ) = x}
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Example. Xθ = ℓp for p = 1/θ.

Derived space. dXθ = {(f ′(θ), f(θ)), f ∈ F(X)}

∥(x, y)∥dXθ
= inf{∥f∥ : f ′(θ) = x, f(θ) = y}

Rochberg and Weiss [1983] There is a short exact sequence

0 −−−−→ Xθ −−−−→ dXθ −−−−→ Xθ −−−−→ 0.

Example The Kalton-Peck space Z2 can be obtained as a derived

space: ℓ2 = (ℓ∞, ℓ1)1/2,

Z2 = dℓ2
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Rochberg spaces

Proposition. The map δnθ : F → ℓ∞, evaluation of the n-th

derivate at θ, is bounded for all 0 < θ < 1 and all n ∈ N.

Definition. Rochberg [1996]

R
(n)
θ = {(xn−1, ..., x1, x0) ∈ ℓn∞ : xi =

f (i)(θ)
i! , for some f ∈

F , and all 0 ≤ i ≤ n− 1} equipped with the canonical quotient

norm.

Remark. R
(n)
θ is isometric to F/

⋂
i<n ker δ

i
θ

Cabello - Castillo - Kalton [2015] The following sequence is exact

0 −−−−→ R
(n)
θ

i−−−−→ R
(n+k)
θ

π−−−−→ R
(k)
θ −−−−→ 0,

where i(xn−1, . . . , x0) = (xn−1, . . . , x0, 0, . . . , 0) and

π(xm+n−1, . . . , xk−1, . . . , x0) = (xk−1, . . . , x0).
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Rochberg spaces

Notation. R(n) := R
(n)
1
2

Proposition [CCGP] R(n) is symplectic for every n ≥ 1.

Cabello - Castillo - Correa [2019] ωn : R(n) ×R(n) → R given by

ωn

(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
=

∑
i+j=n−1

(−1)i⟨xi, yj⟩.

induces an isomorphism of R(n) onto its dual.

For the odd case, let σ(x) = (−x2, x1,−x4, x3, . . .) on ℓ2. The

induced diagonal operator τσ is bounded on R(n).

ωn

(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
:=

ωn

(
(xn−1, . . . , x0), τσ(yn−1, . . . , y0)

)
=

∑
i+j=n−1(−1)i⟨xi, σyj⟩.
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Operators on Rochberg spaces

Proposition. An operator τ : R(n) → X either is strictly singular

or there exists a complemented subspace E of R(n) with E ≃ R(n)

such that τ|E is an isomorphism.

The proof follows arguments of Kalton [82] and Castillo -Correa-

Ferenczi- González [21]

• Cabello - Castillo - Kalton [2015] The exact sequence

0 −−−−→ ℓ2
i−−−−→ R(n) π−−−−→ R(n−1) −−−−→ 0 has

singular quotient map.

• τ : R(n) → X is s.s ⇐⇒ τ|ℓ2 is s.s

• Let τ be a non-s.s operator. WLOG we can assume that τ|ℓ2
is an embedding.
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Operators on Rochberg spaces

ℓ2yi

R(n) (τ,id)−−−−→ X ⊕R(n) −−−−→ Xyπ

R(n−1)
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R(n−1) −−−−→ PO −−−−→ X
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yQ
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R(n−1) −−−−→ PO −−−−→ X

• Q(τ, id) is s.s since it factors through π.

• Q(τ, id) = Q(τ, 0) +Q(0, id).

• Q(0, id) is an embedding.

• Q(τ, 0) is a upper semi-Fredholm.

• τ is an isomorphism on some finite codimensional subspace of

R(n).
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Symplectic structures on Rochberg spaces

Theorem [CCGP] Let T ∈ L(R(n)). If T+T is strictly singular

then T is strictly singular.

The symplectic dual T+ is defined as

ωn(T
+x, y) = ωn(x, Ty)

Theorem [CCGP] R(n) is symplectic non-trivial for every n > 1.
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The end

Gracias!


