Symplectic structures on Rochberg spaces

Lluís Santaló School: Linear and non-linear analysis in Banach spaces

Wilson A. Cuéllar (Universidade de São Paulo)
Joint work with J. Castillo, M. González and R. Pino

17/07/2023
Supported by FAPESP 2016/25574-8; 2019/23669-0

Exact sequences of Banach spaces

Objects. Exact sequences of Banach spaces

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0,
$$

Exact sequences of Banach spaces

Objects. Exact sequences of Banach spaces

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0 \text {, i.e., }
$$

- The arrows are linear and bounded operators

Exact sequences of Banach spaces

Objects. Exact sequences of Banach spaces

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow \text { 0, i.e., }
$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

Exact sequences of Banach spaces

Objects. Exact sequences of Banach spaces

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow \text { 0, i.e., }
$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

The middle space X is said to be a twisted sum of Y and Z.

Exact sequences of Banach spaces

Objects. Exact sequences of Banach spaces

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow \text { 0, i.e., }
$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

The middle space X is said to be a twisted sum of Y and Z.
Examples.

$$
0 \longrightarrow Y \xrightarrow{i} Y \oplus Z \xrightarrow{\pi} Z \longrightarrow 0
$$

Exact sequences of Banach spaces

Objects. Exact sequences of Banach spaces

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow \text { 0, i.e., }
$$

- The arrows are linear and bounded operators
- The kernel of each arrow equals the image of the preceding one.

The middle space X is said to be a twisted sum of Y and Z.
Examples.

$$
0 \longrightarrow Y \xrightarrow{i} Y \oplus Z \xrightarrow{\pi} Z \longrightarrow 0
$$

Phillips [1940] The exact sequence
$0 \longrightarrow c_{0} \xrightarrow{i} \ell_{\infty} \xrightarrow{q} \ell_{\infty} / c_{0} \longrightarrow 0$ is not trivial

3BSP

Palais' Problem. If Y and X / Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

3BSP

Palais' Problem. If Y and X / Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

Enflo, Lindenstrauss and Pisier [1975] There does exist a nontrivial twisted sum of Hilbert spaces.

$$
0 \longrightarrow \ell_{2} \longrightarrow E L P \longrightarrow \ell_{2} \longrightarrow 0
$$

3BSP

Palais' Problem. If Y and X / Y are isomorphic to a Hilbert space, has X to be isomorphic to a Hilbert space?

Enflo, Lindenstrauss and Pisier [1975] There does exist a nontrivial twisted sum of Hilbert spaces.

Another solution to this problem was given by Kalton and Peck [1979]

Kalton-Peck theory

Kalton-Peck [1979] Every exact sequence

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0
$$

is equivalent to one of the form

$$
0 \longrightarrow Y \xrightarrow{i}\left(Y \times Z,\|\cdot\|_{\Omega}\right) \xrightarrow{\pi} Z \longrightarrow 0,
$$

where

Kalton-Peck theory

Kalton-Peck [1979] Every exact sequence

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0
$$

is equivalent to one of the form

$$
0 \longrightarrow Y \xrightarrow{i}\left(Y \times Z,\|\cdot\|_{\Omega}\right) \xrightarrow{\pi} Z \longrightarrow 0,
$$

where

- $\Omega: Z \rightarrow Y$ is homogeneous and there is $K>0$ such that for all $z_{1}, z_{2} \in Z$,

$$
\left\|\Omega\left(z_{1}+z_{2}\right)-\Omega\left(z_{1}\right)-\Omega\left(z_{2}\right)\right\| \leq K\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right)
$$

- $\|(y, z)\|_{\Omega}=\|y-\Omega z\|_{Y}+\|z\|_{Z}$

Kalton-Peck theory

Kalton-Peck [1979] Every exact sequence

$$
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0
$$

is equivalent to one of the form

$$
0 \longrightarrow Y \xrightarrow{i}\left(Y \times Z,\|\cdot\|_{\Omega}\right) \xrightarrow{\pi} Z \longrightarrow 0,
$$

where

- $\Omega: Z \rightarrow Y$ is homogeneous and there is $K>0$ such that for all $z_{1}, z_{2} \in Z$,

$$
\left\|\Omega\left(z_{1}+z_{2}\right)-\Omega\left(z_{1}\right)-\Omega\left(z_{2}\right)\right\| \leq K\left(\left\|z_{1}\right\|+\left\|z_{2}\right\|\right)
$$

- $\|(y, z)\|_{\Omega}=\|y-\Omega z\|_{Y}+\|z\|_{Z}$
Ω is trivial if it may be written as $\Omega=B+L$.

Examples

Proposition. Let $\Omega_{0}: Z_{0} \rightarrow Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_{0} admits a unique quasi-linear extension $\Omega: Z \rightarrow Y$.

Examples

Proposition. Let $\Omega_{0}: Z_{0} \rightarrow Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_{0} admits a unique quasi-linear extension $\Omega: Z \rightarrow Y$.

Example. Kalton-Peck map $\Omega_{2}: c_{00} \rightarrow \ell_{2}$, defined by

$$
\Omega_{2}(x)=x \log \frac{|x|}{\|x\|_{2}}
$$

Examples

Proposition. Let $\Omega_{0}: Z_{0} \rightarrow Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_{0} admits a unique quasi-linear extension $\Omega: Z \rightarrow Y$.

Example. Kalton-Peck map $\Omega_{2}: c_{00} \rightarrow \ell_{2}$, defined by

$$
\begin{aligned}
\Omega_{2}(x) & =x \log \frac{|x|}{\|x\|_{2}} \\
\Omega_{2}(x)(n) & =x(n) \log \frac{|x(n)|}{\|x\|_{2}}
\end{aligned}
$$

Examples

Proposition. Let $\Omega_{0}: Z_{0} \rightarrow Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_{0} admits a unique quasi-linear extension $\Omega: Z \rightarrow Y$.

Example. Kalton-Peck map $\Omega_{2}: c_{00} \rightarrow \ell_{2}$, defined by

$$
\begin{aligned}
\Omega_{2}(x) & =x \log \frac{|x|}{\|x\|_{2}} \\
\Omega_{2}(x)(n) & =x(n) \log \frac{|x(n)|}{\|x\|_{2}}
\end{aligned}
$$

Kalton-Peck space $Z_{2}=\ell_{2} \oplus_{\Omega_{2}} \ell_{2}$

$$
0 \longrightarrow \ell_{2} \longrightarrow Z_{2} \longrightarrow \ell_{2} \longrightarrow 0
$$

Examples

Proposition. Let $\Omega_{0}: Z_{0} \rightarrow Y$ be a quasi-linear map defined on a dense subspace of Z. Then Ω_{0} admits a unique quasi-linear extension $\Omega: Z \rightarrow Y$.

Example. Kalton-Peck map $\Omega_{2}: c_{00} \rightarrow \ell_{2}$, defined by

$$
\begin{aligned}
\Omega_{2}(x) & =x \log \frac{|x|}{\|x\|_{2}} \\
\Omega_{2}(x)(n) & =x(n) \log \frac{|x(n)|}{\|x\|_{2}}
\end{aligned}
$$

Kalton-Peck space $Z_{2}=\ell_{2} \oplus \Omega_{2} \ell_{2}$

$$
0 \longrightarrow \ell_{2} \longrightarrow Z_{2} \longrightarrow \ell_{2} \longrightarrow 0 .
$$

Kalton-Peck [1979] The quotient map $Z_{2} \rightarrow \ell_{2}$ is strictly singular.

Symplectic structures

Definition. A symplectic form on a real Banach space X is a continuous bilinear map $\omega: X \times X \rightarrow \mathbb{R}$ such that

Symplectic structures

Definition. A symplectic form on a real Banach space X is a continuous bilinear map $\omega: X \times X \rightarrow \mathbb{R}$ such that

1. $\omega(x, y)=-\omega(y, x)$
2. $L_{\omega}: X \rightarrow X^{*}$ is an onto isomorphism, where

$$
L_{\omega}(x)(y)=\omega(x, y)
$$

(X, ω) symplectic Banach space.

Symplectic structures

Definition. A symplectic form on a real Banach space X is a continuous bilinear map $\omega: X \times X \rightarrow \mathbb{R}$ such that

1. $\omega(x, y)=-\omega(y, x)$
2. $L_{\omega}: X \rightarrow X^{*}$ is an onto isomorphism, where

$$
L_{\omega}(x)(y)=\omega(x, y)
$$

(X, ω) symplectic Banach space.

Remark.

1. $L_{\omega}^{*}(x)=-L_{\omega}(x)$, for every $x \in X \subseteq X^{* *}$.
2. Every symplectic Banach space is reflexive.

Symplectic Banach spaces (Examples)

1. $X=\mathbb{R}^{2}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}-y x^{\prime}$

Symplectic Banach spaces (Examples)

1. $X=\mathbb{R}^{2}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}-y x^{\prime}$
2. $X=\mathbb{R}^{2 n}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left\langle(x, y), J\left(x^{\prime}, y^{\prime}\right)\right\rangle$, where $J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$

Symplectic Banach spaces (Examples)

1. $X=\mathbb{R}^{2}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}-y x^{\prime}$
2. $X=\mathbb{R}^{2 n}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left\langle(x, y), J\left(x^{\prime}, y^{\prime}\right)\right\rangle$, where $J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
3. $X=\ell_{2}$ with $\omega(x, y)=\langle x, \sigma y\rangle$, where

$$
\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{2},-x_{1}, x_{4},-x_{3}, \ldots\right)
$$

Symplectic Banach spaces (Examples)

1. $X=\mathbb{R}^{2}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}-y x^{\prime}$
2. $X=\mathbb{R}^{2 n}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left\langle(x, y), J\left(x^{\prime}, y^{\prime}\right)\right\rangle$, where $J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
3. $X=\ell_{2}$ with $\omega(x, y)=\langle x, \sigma y\rangle$, where

$$
\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{2},-x_{1}, x_{4},-x_{3}, \ldots\right)
$$

4. Trivial symplectic structure. $X=Y \oplus Y^{*}, Y$ reflexive

$$
\omega\left(\left(y, y^{*}\right),\left(z, z^{*}\right)\right)=z^{*}(y)-y^{*}(z)
$$

Symplectic Banach spaces (Examples)

1. $X=\mathbb{R}^{2}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}-y x^{\prime}$
2. $X=\mathbb{R}^{2 n}$ with $\omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left\langle(x, y), J\left(x^{\prime}, y^{\prime}\right)\right\rangle$, where $J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
3. $X=\ell_{2}$ with $\omega(x, y)=\langle x, \sigma y\rangle$, where

$$
\sigma\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{2},-x_{1}, x_{4},-x_{3}, \ldots\right)
$$

4. Trivial symplectic structure. $X=Y \oplus Y^{*}, Y$ reflexive

$$
\omega\left(\left(y, y^{*}\right),\left(z, z^{*}\right)\right)=z^{*}(y)-y^{*}(z) .
$$

5. Kalton-Peck space Z_{2}

$$
\begin{aligned}
& 0 \longrightarrow \ell_{2} \longrightarrow Z_{2} \longrightarrow \ell_{2} \longrightarrow 0 . \\
& \omega\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left\langle x, y^{\prime}\right\rangle-\left\langle y, x^{\prime}\right\rangle
\end{aligned}
$$

Equivalence

Definition

Two symplectic spaces $\left(X_{1}, \omega_{1}\right)$ and $\left(X_{2}, \omega_{2}\right)$ are equivalent if there is an isomorphism $T: X_{1} \rightarrow X_{2}$ such that
$\omega_{2}(T x, T y)=\omega_{1}(x, y)$.
$\Longleftrightarrow L_{\omega_{1}}=T^{*} L_{\omega_{2}} T$

$$
\begin{array}{cc}
X_{1} \xrightarrow{T} & X_{2} \\
\downarrow_{\omega_{1}} & \downarrow^{L_{\omega_{2}}} \\
X_{1}^{*} \stackrel{T^{*}}{\longleftarrow} & X_{2}^{*}
\end{array}
$$

Equivalence

Definition

Two symplectic spaces $\left(X_{1}, \omega_{1}\right)$ and $\left(X_{2}, \omega_{2}\right)$ are equivalent if there is an isomorphism $T: X_{1} \rightarrow X_{2}$ such that
$\omega_{2}(T x, T y)=\omega_{1}(x, y)$.
$\Longleftrightarrow L_{\omega_{1}}=T^{*} L_{\omega_{2}} T$

$$
\begin{array}{cc}
X_{1} \xrightarrow{T} & X_{2} \\
\downarrow_{\omega_{1}} & \downarrow^{L_{\omega_{2}}} \\
X_{1}^{*} \stackrel{T^{*}}{\longleftarrow} & X_{2}^{*}
\end{array}
$$

Weinstein [1971] Every symplectic structure on a Hilbert space is trivial.

Equivalence

Definition

Two symplectic spaces $\left(X_{1}, \omega_{1}\right)$ and $\left(X_{2}, \omega_{2}\right)$ are equivalent if there is an isomorphism $T: X_{1} \rightarrow X_{2}$ such that
$\omega_{2}(T x, T y)=\omega_{1}(x, y)$.
$\Longleftrightarrow L_{\omega_{1}}=T^{*} L_{\omega_{2}} T$

$$
\begin{gathered}
X_{1} \xrightarrow{T} X_{2} \\
\downarrow_{\omega_{\omega_{1}}} \quad \downarrow^{L_{\omega_{2}}} \\
X_{1}^{*} \stackrel{T^{*}}{\longleftarrow} X_{2}^{*}
\end{gathered}
$$

Weinstein [1971] Every symplectic structure on a Hilbert space is trivial.

Kalton-Swanson [1982] $\left(Z_{2}, \omega\right)$ is not trivial.

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \rightarrow \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_{1} to ℓ_{1}. Then for every $p \in(1, \infty)$ we have that T is bounded from ℓ_{p} to ℓ_{p} and

$$
\left\|T: \ell_{p} \rightarrow \ell_{p}\right\| \leq\left\|T: \ell_{\infty} \rightarrow \ell_{\infty}\right\|^{1-\frac{1}{p}}\left\|T: \ell_{1} \rightarrow \ell_{1}\right\|^{\frac{1}{p}}
$$

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \rightarrow \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_{1} to ℓ_{1}. Then for every $p \in(1, \infty)$ we have that T is bounded from ℓ_{p} to ℓ_{p} and

$$
\left\|T: \ell_{p} \rightarrow \ell_{p}\right\| \leq\left\|T: \ell_{\infty} \rightarrow \ell_{\infty}\right\|^{1-\frac{1}{p}}\left\|T: \ell_{1} \rightarrow \ell_{1}\right\|^{\frac{1}{p}}
$$

Notation. $S=\{z \in \mathbb{C}: 0<\Re(z)<1\}$

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \rightarrow \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_{1} to ℓ_{1}. Then for every $p \in(1, \infty)$ we have that T is bounded from ℓ_{p} to ℓ_{p} and

$$
\left\|T: \ell_{p} \rightarrow \ell_{p}\right\| \leq\left\|T: \ell_{\infty} \rightarrow \ell_{\infty}\right\|^{1-\frac{1}{p}}\left\|T: \ell_{1} \rightarrow \ell_{1}\right\|^{\frac{1}{p}}
$$

Notation. $S=\{z \in \mathbb{C}: 0<\Re(z)<1\}$
\mathcal{F} the space of functions $f: \bar{S} \rightarrow \ell_{\infty}$ such that

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \rightarrow \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_{1} to ℓ_{1}. Then for every $p \in(1, \infty)$ we have that T is bounded from ℓ_{p} to ℓ_{p} and

$$
\left\|T: \ell_{p} \rightarrow \ell_{p}\right\| \leq\left\|T: \ell_{\infty} \rightarrow \ell_{\infty}\right\|^{1-\frac{1}{p}}\left\|T: \ell_{1} \rightarrow \ell_{1}\right\|^{\frac{1}{p}}
$$

Notation. $S=\{z \in \mathbb{C}: 0<\Re(z)<1\}$
\mathcal{F} the space of functions $f: \bar{S} \rightarrow \ell_{\infty}$ such that

1. f is analytic on S
2. $f(i t) \in \ell_{\infty}$ and $f(1+i t) \in \ell_{1}$ for every $t \in \mathbb{R}$.
3. $t \mapsto f(j+i t)$ is continuous and bounded $(j=0,1)$

$$
\|f\|=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{\ell_{\infty}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{\ell_{1}}\right\}<\infty
$$

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \rightarrow \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_{1} to ℓ_{1}. Then for every $p \in(1, \infty)$ we have that T is bounded from ℓ_{p} to ℓ_{p} and

$$
\left\|T: \ell_{p} \rightarrow \ell_{p}\right\| \leq\left\|T: \ell_{\infty} \rightarrow \ell_{\infty}\right\|^{1-\frac{1}{p}}\left\|T: \ell_{1} \rightarrow \ell_{1}\right\|^{\frac{1}{p}}
$$

Notation. $S=\{z \in \mathbb{C}: 0<\Re(z)<1\}$
\mathcal{F} the space of functions $f: \bar{S} \rightarrow \ell_{\infty}$ such that

1. f is analytic on S
2. $f(i t) \in \ell_{\infty}$ and $f(1+i t) \in \ell_{1}$ for every $t \in \mathbb{R}$.
3. $t \mapsto f(j+i t)$ is continuous and bounded $(j=0,1)$

$$
\|f\|=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{\ell_{\infty}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{\ell_{1}}\right\}<\infty
$$

For $0<\theta<1$, the complex interpolation space X_{θ} is defined as

$$
X_{\theta}=\{f(\theta): f \in \mathcal{F}\}
$$

Complex method of interpolation

Riesz-Thorin: Let $T: \ell_{\infty} \rightarrow \ell_{\infty}$ be a bounded operator which is also bounded as a map from ℓ_{1} to ℓ_{1}. Then for every $p \in(1, \infty)$ we have that T is bounded from ℓ_{p} to ℓ_{p} and

$$
\left\|T: \ell_{p} \rightarrow \ell_{p}\right\| \leq\left\|T: \ell_{\infty} \rightarrow \ell_{\infty}\right\|^{1-\frac{1}{p}}\left\|T: \ell_{1} \rightarrow \ell_{1}\right\|^{\frac{1}{p}}
$$

Notation. $S=\{z \in \mathbb{C}: 0<\Re(z)<1\}$
\mathcal{F} the space of functions $f: \bar{S} \rightarrow \ell_{\infty}$ such that

1. f is analytic on S
2. $f(i t) \in \ell_{\infty}$ and $f(1+i t) \in \ell_{1}$ for every $t \in \mathbb{R}$.
3. $t \mapsto f(j+i t)$ is continuous and bounded $(j=0,1)$

$$
\|f\|=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{\ell_{\infty}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{\ell_{1}}\right\}<\infty
$$

For $0<\theta<1$, the complex interpolation space X_{θ} is defined as

$$
X_{\theta}=\{f(\theta): f \in \mathcal{F}\},\|x\|_{X_{\theta}}=\inf \left\{\|f\|_{\mathcal{F}}: f \in \mathcal{F}, f(\theta)=x\right\}
$$

Interpolation Theory and Twisted sums

Example. $X_{\theta}=\ell_{p}$ for $p=1 / \theta$.

Interpolation Theory and Twisted sums

Example. $X_{\theta}=\ell_{p}$ for $p=1 / \theta$.
Derived space. $d X_{\theta}=\left\{\left(f^{\prime}(\theta), f(\theta)\right), f \in \mathcal{F}(\bar{X})\right\}$

$$
\|(x, y)\|_{d X_{\theta}}=\inf \left\{\|f\|: f^{\prime}(\theta)=x, f(\theta)=y\right\}
$$

Interpolation Theory and Twisted sums

Example. $X_{\theta}=\ell_{p}$ for $p=1 / \theta$.
Derived space. $d X_{\theta}=\left\{\left(f^{\prime}(\theta), f(\theta)\right), f \in \mathcal{F}(\bar{X})\right\}$

$$
\|(x, y)\|_{d X_{\theta}}=\inf \left\{\|f\|: f^{\prime}(\theta)=x, f(\theta)=y\right\}
$$

Rochberg and Weiss [1983] There is a short exact sequence

$$
0 \longrightarrow X_{\theta} \longrightarrow d X_{\theta} \longrightarrow X_{\theta} \longrightarrow 0
$$

Interpolation Theory and Twisted sums

Example. $X_{\theta}=\ell_{p}$ for $p=1 / \theta$.
Derived space. $d X_{\theta}=\left\{\left(f^{\prime}(\theta), f(\theta)\right), f \in \mathcal{F}(\bar{X})\right\}$

$$
\|(x, y)\|_{d X_{\theta}}=\inf \left\{\|f\|: f^{\prime}(\theta)=x, f(\theta)=y\right\}
$$

Rochberg and Weiss [1983] There is a short exact sequence

$$
0 \longrightarrow X_{\theta} \longrightarrow d X_{\theta} \longrightarrow X_{\theta} \longrightarrow 0
$$

Example The Kalton-Peck space Z_{2} can be obtained as a derived space: $\ell_{2}=\left(\ell_{\infty}, \ell_{1}\right)_{1 / 2}$,
$Z_{2}=d \ell_{2}$

Rochberg spaces

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \rightarrow \ell_{\infty}$, evaluation of the n-th derivate at θ, is bounded for all $0<\theta<1$ and all $n \in \mathbb{N}$.

Rochberg spaces

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \rightarrow \ell_{\infty}$, evaluation of the n-th derivate at θ, is bounded for all $0<\theta<1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]
$\mathfrak{R}_{\theta}^{(n)}=\left\{\left(x_{n-1}, \ldots, x_{1}, x_{0}\right) \in \ell_{\infty}^{n}: x_{i}=\frac{f^{(i)}(\theta)}{i!}\right.$, for some $f \in$
\mathcal{F}, and all $0 \leq i \leq n-1\}$ equipped with the canonical quotient norm.

Rochberg spaces

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \rightarrow \ell_{\infty}$, evaluation of the n-th derivate at θ, is bounded for all $0<\theta<1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]
$\mathfrak{R}_{\theta}^{(n)}=\left\{\left(x_{n-1}, \ldots, x_{1}, x_{0}\right) \in \ell_{\infty}^{n}: x_{i}=\frac{f^{(i)}(\theta)}{i!}\right.$, for some $f \in$
\mathcal{F}, and all $0 \leq i \leq n-1\}$ equipped with the canonical quotient norm.
Remark. $\mathfrak{R}_{\theta}^{(n)}$ is isometric to $\mathcal{F} / \bigcap_{i<n} \operatorname{ker} \delta_{\theta}^{i}$

Rochberg spaces

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \rightarrow \ell_{\infty}$, evaluation of the n-th derivate at θ, is bounded for all $0<\theta<1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]
$\mathfrak{R}_{\theta}^{(n)}=\left\{\left(x_{n-1}, \ldots, x_{1}, x_{0}\right) \in \ell_{\infty}^{n}: x_{i}=\frac{f^{(i)}(\theta)}{i!}\right.$, for some $f \in$
\mathcal{F}, and all $0 \leq i \leq n-1\}$ equipped with the canonical quotient norm.

Remark. $\mathfrak{R}_{\theta}^{(n)}$ is isometric to $\mathcal{F} / \bigcap_{i<n} \operatorname{ker} \delta_{\theta}^{i}$
Cabello - Castillo - Kalton [2015] The following sequence is exact

$$
0 \longrightarrow \mathfrak{R}_{\theta}^{(n)} \xrightarrow{i} \mathfrak{R}_{\theta}^{(n+k)} \xrightarrow{\pi} \mathfrak{R}_{\theta}^{(k)} \longrightarrow 0
$$

Rochberg spaces

Proposition. The map $\delta_{\theta}^{n}: \mathcal{F} \rightarrow \ell_{\infty}$, evaluation of the n-th derivate at θ, is bounded for all $0<\theta<1$ and all $n \in \mathbb{N}$.

Definition. Rochberg [1996]

$\mathfrak{R}_{\theta}^{(n)}=\left\{\left(x_{n-1}, \ldots, x_{1}, x_{0}\right) \in \ell_{\infty}^{n}: x_{i}=\frac{f^{(i)}(\theta)}{i!}\right.$, for some $f \in$
\mathcal{F}, and all $0 \leq i \leq n-1\}$ equipped with the canonical quotient norm.

Remark. $\mathfrak{R}_{\theta}^{(n)}$ is isometric to $\mathcal{F} / \bigcap_{i<n} \operatorname{ker} \delta_{\theta}^{i}$
Cabello - Castillo - Kalton [2015] The following sequence is exact

$$
0 \longrightarrow \mathfrak{R}_{\theta}^{(n)} \xrightarrow{i} \mathfrak{R}_{\theta}^{(n+k)} \xrightarrow{\pi} \mathfrak{R}_{\theta}^{(k)} \longrightarrow 0
$$

where $i\left(x_{n-1}, \ldots, x_{0}\right)=\left(x_{n-1}, \ldots, x_{0}, 0, \ldots, 0\right)$ and $\pi\left(x_{m+n-1}, \ldots, x_{k-1}, \ldots, x_{0}\right)=\left(x_{k-1}, \ldots, x_{0}\right)$.

Rochberg spaces

Notation. $\mathfrak{R}^{(n)}:=\mathfrak{R}_{\frac{1}{2}}^{(n)}$
Proposition [CCGP] $\mathfrak{R}^{(n)}$ is symplectic for every $n \geq 1$.

Rochberg spaces

Notation. $\mathfrak{R}^{(n)}:=\mathfrak{R}_{\frac{1}{2}}^{(n)}$
Proposition [CCGP] $\mathfrak{R}^{(n)}$ is symplectic for every $n \geq 1$.
Cabello - Castillo - Correa [2019] $\omega_{n}: \mathfrak{R}^{(n)} \times \mathfrak{R}^{(n)} \rightarrow \mathbb{R}$ given by

$$
\omega_{n}\left(\left(x_{n-1}, \ldots, x_{0}\right),\left(y_{n-1}, \ldots, y_{0}\right)\right)=\sum_{i+j=n-1}(-1)^{i}\left\langle x_{i}, y_{j}\right\rangle
$$

induces an isomorphism of $R^{(n)}$ onto its dual.

Rochberg spaces

Notation. $\mathfrak{R}^{(n)}:=\mathfrak{R}_{\frac{1}{2}}^{(n)}$
Proposition [CCGP] $\mathfrak{R}^{(n)}$ is symplectic for every $n \geq 1$.
Cabello - Castillo - Correa [2019] $\omega_{n}: \mathfrak{R}^{(n)} \times \mathfrak{R}^{(n)} \rightarrow \mathbb{R}$ given by

$$
\omega_{n}\left(\left(x_{n-1}, \ldots, x_{0}\right),\left(y_{n-1}, \ldots, y_{0}\right)\right)=\sum_{i+j=n-1}(-1)^{i}\left\langle x_{i}, y_{j}\right\rangle
$$

induces an isomorphism of $R^{(n)}$ onto its dual.
For the odd case, let $\sigma(x)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots\right)$ on ℓ_{2}. The induced diagonal operator τ_{σ} is bounded on $\mathfrak{R}^{(n)}$.

$$
\begin{aligned}
& \overline{\omega_{n}}\left(\left(x_{n-1}, \ldots, x_{0}\right),\left(y_{n-1}, \ldots, y_{0}\right)\right):= \\
& \omega_{n}\left(\left(x_{n-1}, \ldots, x_{0}\right), \tau_{\sigma}\left(y_{n-1}, \ldots, y_{0}\right)\right)=\sum_{i+j=n-1}(-1)^{i}\left\langle x_{i}, \sigma y_{j}\right\rangle
\end{aligned}
$$

Operators on Rochberg spaces

Proposition. An operator $\tau: \mathfrak{R}^{(n)} \rightarrow X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{\mid E}$ is an isomorphism.

Operators on Rochberg spaces

Proposition. An operator $\tau: \mathfrak{R}^{(n)} \rightarrow X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{\mid E}$ is an isomorphism.

The proof follows arguments of Kalton [82] and Castillo -Correa-Ferenczi- González [21]

- Cabello - Castillo - Kalton [2015] The exact sequence $0 \longrightarrow \ell_{2} \xrightarrow{i} \mathfrak{R}^{(n)} \xrightarrow{\pi} \mathfrak{R}^{(n-1)} \longrightarrow 0$ has singular quotient map.

Operators on Rochberg spaces

Proposition. An operator $\tau: \mathfrak{R}^{(n)} \rightarrow X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{\mid E}$ is an isomorphism.

The proof follows arguments of Kalton [82] and Castillo -Correa-Ferenczi- González [21]

- Cabello - Castillo - Kalton [2015] The exact sequence
 singular quotient map.
- $\tau: \mathfrak{R}^{(n)} \rightarrow X$ is $s . s \Longleftrightarrow \tau_{\mid \ell_{2}}$ is s.s

Operators on Rochberg spaces

Proposition. An operator $\tau: \mathfrak{R}^{(n)} \rightarrow X$ either is strictly singular or there exists a complemented subspace E of $\mathfrak{R}^{(n)}$ with $E \simeq \mathfrak{R}^{(n)}$ such that $\tau_{\mid E}$ is an isomorphism.

The proof follows arguments of Kalton [82] and Castillo -Correa-Ferenczi- González [21]

- Cabello - Castillo - Kalton [2015] The exact sequence $0 \longrightarrow \ell_{2} \xrightarrow{i} \mathfrak{R}^{(n)} \xrightarrow{\pi} \mathfrak{R}^{(n-1)} \longrightarrow 0$ has singular quotient map.
- $\tau: \mathfrak{R}^{(n)} \rightarrow X$ is $s . s \Longleftrightarrow \tau_{\mid \ell_{2}}$ is s.s
- Let τ be a non-s.s operator. WLOG we can assume that $\tau_{\mid \ell_{2}}$ is an embedding.

Operators on Rochberg spaces

$$
\begin{aligned}
& \ell_{2} \\
& i \\
& \mathfrak{R}^{(n)} \quad \xrightarrow{(\tau, \mathbf{i d})} X \oplus \mathfrak{R}^{(n)} \longrightarrow X \\
& \pi \\
& \mathfrak{R}^{(n-1)}
\end{aligned}
$$

Operators on Rochberg spaces

Operators on Rochberg spaces

Operators on Rochberg spaces

- $Q(\tau, \mathbf{i d})$ is $s . s$ since it factors through π.
- $Q(\tau, \mathbf{i d})=Q(\tau, 0)+Q(0, \mathbf{i d})$.
- $Q(0, \mathbf{i d})$ is an embedding.
- $Q(\tau, 0)$ is a upper semi-Fredholm.
- τ is an isomorphism on some finite codimensional subspace of $\mathfrak{R}^{(n)}$.

Symplectic structures on Rochberg spaces

Theorem [CCGP] Let $T \in \mathcal{L}\left(\mathfrak{R}^{(n)}\right)$. If $T^{+} T$ is strictly singular then T is strictly singular.

Symplectic structures on Rochberg spaces

Theorem [CCGP] Let $T \in \mathcal{L}\left(\mathfrak{R}^{(n)}\right)$. If $T^{+} T$ is strictly singular then T is strictly singular.

The symplectic dual T^{+}is defined as

$$
\omega_{n}\left(T^{+} x, y\right)=\omega_{n}(x, T y)
$$

Symplectic structures on Rochberg spaces

Theorem [CCGP] Let $T \in \mathcal{L}\left(\mathfrak{R}^{(n)}\right)$. If $T^{+} T$ is strictly singular then T is strictly singular.

The symplectic dual T^{+}is defined as

$$
\omega_{n}\left(T^{+} x, y\right)=\omega_{n}(x, T y)
$$

Theorem [CCGP] $\mathfrak{R}^{(n)}$ is symplectic non-trivial for every $n>1$.

The end

Gracias!

