On the numerical index of 2-dimensional Lipschitz-free spaces

Based on a joint work with Antonio José Guirao and Vicente Montesinos

Christian Cobollo

XXII Lluís Santaló School 2023 July 17-21, 2023, Santander

Sponsors

The author is supported by:

MCIN/AEI/10.13039/501100011033

- PID2021-122126NB-C33
- PID2019-105011GB-I00

Generalitat Valenciana

- PROMETEU/2021/070
- CIACIF/2021/378

Introduction

- Lipschitz-free spaces
- Numerical index

Introduction

$\mathcal{F}(M)$ Preliminaries

Introduction

$\mathcal{F}(M)$ Preliminaries

Introduction

$n(X)$ Preliminaries
$T \in \mathcal{L}(X)$, its numerical radius is defined as

$$
\nu(T)=\sup \left\{\left|\left\langle x^{*}, T x\right\rangle\right|: x \in S_{X}, x^{*} \in S_{X^{*}},\left\langle x, x^{*}\right\rangle=1\right\}
$$

Introduction

$n(X)$ Preliminaries
$T \in \mathcal{L}(X)$, its numerical radius is defined as

$$
\nu(T)=\sup \left\{\left|\left\langle x^{*}, T x\right\rangle\right|: x \in S_{X}, x^{*} \in S_{X^{*}},\left\langle x, x^{*}\right\rangle=1\right\}
$$

Let $x \in S_{X}$, its contribution to $\nu(T)$ is:

$$
\nu(T, x):=\sup \left\{\left|\left\langle x^{*}, T x\right\rangle\right|: x^{*} \in \operatorname{Ext} B_{X^{*}},\left\langle x, x^{*}\right\rangle=1\right\}
$$

Introduction

$n(X)$ Preliminaries
$T \in \mathcal{L}(X)$, its numerical radius is defined as

$$
\begin{aligned}
\nu(T) & =\sup \left\{\left|\left\langle x^{*}, T x\right\rangle\right|: x \in S_{X}, x^{*} \in S_{X^{*}},\left\langle x, x^{*}\right\rangle=1\right\} \\
& =\sup \left\{\nu(T, x): x \in S_{X}\right\}
\end{aligned}
$$

Let $x \in S_{X}$, its contribution to $\nu(T)$ is:

$$
\nu(T, x):=\sup \left\{\left|\left\langle x^{*}, T x\right\rangle\right|: x^{*} \in \operatorname{Ext} B_{X^{*}},\left\langle x, x^{*}\right\rangle=1\right\}
$$

Introduction

$T \in \mathcal{L}(X)$, its numerical radius is defined as

$$
\begin{aligned}
\nu(T) & =\sup \left\{\left|\left\langle x^{*}, T x\right\rangle\right|: x \in S_{X}, x^{*} \in S_{X^{*}},\left\langle x, x^{*}\right\rangle=1\right\} \\
& =\sup \left\{\nu(T, x): x \in S_{X}\right\}
\end{aligned}
$$

Let $x \in S_{X}$, its contribution to $\nu(T)$ is:

$$
\nu(T, x):=\sup \left\{\left|\left\langle x^{*}, T x\right\rangle\right|: x^{*} \in \operatorname{Ext} B_{X^{*}},\left\langle x, x^{*}\right\rangle=1\right\}
$$

Let $M=(\{x, y, z\}, d), T \in \mathcal{L}(\mathcal{F}(M))$, then

$$
\nu(T)=\max \left\{\nu\left(T, m_{x, y}\right), \nu\left(T, m_{x, z}\right), \nu\left(T, m_{y, z}\right)\right\}
$$

$n(\mathcal{F}(M))$ Preliminaries

The numerical index of X is defined as

$$
n(X):=\inf \left\{\nu(T): T \in S_{\mathcal{L}(X)}\right\}
$$

Goal: find $T \in S_{\mathcal{L}(X)}$ minimizing

$$
\max \left\{\nu\left(T, m_{x, y}\right), \nu\left(T, m_{x, z}\right), \nu\left(T, m_{y, z}\right)\right\}
$$

The first lower bound, the optimal contribution

 Some metric tools
Gromov product

$$
G_{z}(x, y):=d(x, z)+d(y, z)-d(x, y)
$$

The first lower bound, the optimal contribution

 Some metric tools
Gromov product

$$
G_{z}(x, y):=d(x, z)+d(y, z)-d(x, y)
$$

Weighted Gromov product

$$
\gamma_{z}(x, y):=d(x, y) G_{z}(x, y)
$$

The first lower bound, the optimal contribution

 Some metric tools
Gromov product

$$
G_{z}(x, y):=d(x, z)+d(y, z)-d(x, y)
$$

Weighted Gromov product

$$
\gamma_{z}(x, y):=d(x, y) G_{z}(x, y)
$$

Optimal Contribution

$$
\nu_{\mathrm{op}}(x, y):=\frac{\gamma_{z}(x, y)}{\gamma_{y}(x, z)+\gamma_{x}(y, z)}
$$

The first lower bound, the optimal contribution

Lemma

Let $M=(\{x, y, z\}, d)$ be a triangle, and $T \in S_{\mathcal{F}(M)}$ be such that $\left\|T m_{x, y}\right\|=1$. Then,

$$
\nu\left(T, m_{x, y}\right) \geq \nu_{\mathrm{op}}(x, y)
$$

The first lower bound, the optimal contribution

Lemma

Let $M=(\{x, y, z\}, d)$ be a triangle, and $T \in S_{\mathcal{F}(M)}$ be such that $\left\|T m_{x, y}\right\|=1$. Then,

$$
\nu\left(T, m_{x, y}\right) \geq \nu_{\mathrm{op}}(x, y)
$$

Moreover, if

$$
T m_{x, y}=\lambda_{z} m_{x, z}+\left(1-\lambda_{z}\right) m_{y, z}
$$

where

$$
\lambda_{z}:=\frac{\gamma_{y}(x, z)}{\gamma_{y}(x, z)+\gamma_{x}(y, z)},
$$

then $\nu\left(T, m_{x, y}\right)=\nu_{\mathrm{op}}(x, y)$.

The first lower bound, the optimal contribution

Proposition

Let $M=(\{x, y, z\}, d)$ be a metric space. Then, $n(\mathcal{F}(M)) \in\left[\frac{1}{2}, 1\right]$. Moreover, if M is not an equilateral triangle, then $n(\mathcal{F}(M))>1 / 2$.

The second lower bound, the metric ratio

Lemma

Let $M=(\{x, y, z\}, d)$ be a triangle, and $T \in S_{\mathcal{F}(M)}$ be such that $\left\|T m_{x, y}\right\|=1$. Then,

$$
\nu(T) \geq R_{z}(x, y)
$$

Combining the bounds

If $T m_{x, y} \in S_{\mathcal{F}(M)}$, then

$$
\begin{aligned}
\nu(T) & \geq \nu_{\mathrm{op}}(x, y) \\
\nu(T) & \geq R_{z}(x, y)
\end{aligned}
$$

Corollary

Let $M=(\{x, y, z\}, d)$ be a triangle and $T \in S_{\mathcal{L}(\mathcal{F}(M))}$ satisfying $\left\|T m_{x, y}\right\|=1$. Then,

$$
\nu(T) \geq \max \left\{\nu_{\mathrm{op}}(x, y), R_{z}(x, y)\right\} .
$$

Combining the bounds

Proposition

Let $M=(\{x, y, z\}, d)$ a triangle. Then

$$
\begin{aligned}
n(\mathcal{F}(M)) \geq \min \{ & \max \left\{\nu_{\mathrm{op}}(x, y), R_{z}(x, y)\right\}, \\
& \max \left\{\nu_{\mathrm{op}}(x, z), R_{y}(x, z)\right\}, \\
& \left.\max \left\{\nu_{\mathrm{op}}(y, z), R_{x}(y, z)\right\}\right\}
\end{aligned}
$$

Combining the bounds

Proposition

Let $M=(\{x, y, 0\}, d)$ be a triangle with $d(x, y) \geq d(x, 0) \geq d(y, 0)$. Then,

$$
n(\mathcal{F}(M)) \geq \max \left\{\nu_{\mathrm{op}}(x, 0), R_{y}(x, 0)\right\}
$$

Combining the bounds

Theorem

Let $M=(\{x, y, 0\}, d)$ be a triangle with $d(x, y) \geq d(x, 0) \geq d(y, 0)$. Then,

$$
n(\mathcal{F}(M))=\max \left\{\nu_{\mathrm{op}}(x, 0), R_{y}(x, 0)\right\} .
$$

The formula

Theorem

Let $M=(\{x, y, 0\}, d)$ be a metric space with $d(x, y) \geq d(x, 0) \geq d(y, 0)$. Then:

- if M is aligned, then $n(\mathcal{F}(M))=1$;
- otherwise, if M is a triangle, then

$$
n(\mathcal{F}(M))=\max \left\{\nu_{\mathrm{op}}(x, 0), R_{y}(x, 0)\right\} .
$$

Some Aplications

Hexagonal norms

Corollary

Let $M=(\{x, y, 0\}, d)$ be an isosceles triangle such that $d(x, y)=d(x, 0) \geq d(y, 0)$. Then

$$
n(\mathcal{F}(M))=\frac{d(x, 0)}{d(x, 0)+d(y, 0)} .
$$

In particular, $n(\mathcal{F}(M)) \in\left[\frac{1}{2}, 1\right)$.

Some Aplications

Hexagonal norms

Corollary

Let $M=(\{x, y, 0\}, d)$ be an isosceles triangle such that $d(x, y) \geq d(x, 0)=d(y, 0)$. Then

$$
n(\mathcal{F}(M))=\frac{d(x, 0)}{3 d(x, 0)-d(x, y)} .
$$

In particular, $n(\mathcal{F}(M)) \in\left[\frac{1}{2}, 1\right)$.
嗇 M. Martín and J. Merí, Numerical index of some polyhedral norms on the plane (2007)

Some Aplications

Infinite dimensional spaces
We might even use triangles in some infinite-dimensional constructions:

Corollary

We can construct infinite dimensional spaces $\mathcal{F}(M)$ with $n(\mathcal{F}(M))=\alpha$ for every $\alpha \in\left[\frac{1}{2}, 1\right]$

$$
n\left(\mathcal{F}\left(\bigoplus_{1} M_{i}\right)\right)=n\left(\bigoplus_{1} \mathcal{F}\left(M_{i}\right)\right)=\inf \left\{n\left(\mathcal{F}\left(M_{i}\right)\right)\right\}=\alpha
$$

Some Aplications

Infinite dimensional spaces
We might even use triangles in some infinite-dimensional constructions:

Corollary

We can construct infinite dimensional spaces $\mathcal{F}(M)$ with $n(\mathcal{F}(M))=\alpha$ for every $\alpha \in\left[\frac{1}{2}, 1\right]$

$$
n\left(\mathcal{F}\left(\bigoplus_{1} M_{i}\right)\right)=n\left(\bigoplus_{1} \mathcal{F}\left(M_{i}\right)\right)=\inf \left\{n\left(\mathcal{F}\left(M_{i}\right)\right)\right\}=\alpha
$$

Theorem

Let $A \subset\left(\mathbb{R}^{n},\|\cdot\|_{2}\right), n \geq 2$, with non-empty interior. Then, $\mathcal{F}(A)$ is a separable infinite-dimensional Lipschitz-free space such that, for every $\alpha \in\left[\frac{1}{2}, 1\right]$, it contains a 2-dimensional subspace Y_{α} with $n\left(Y_{\alpha}\right)=\alpha$.

Some References

Ch．C．，A．J．Guirao，and V．Montesinos，The numerical index of 2－dimensional Lipschitz－free spaces（arXiv：2304．13183）（2023）．
目 J．Merí and A．Quero，On the numerical index of the real two－dimensional Lp space（2023）

囯 M．Martín and J．Merí，Numerical index of some polyhedral norms on the plane（2007）

围 V．Kadets，M．Martín，and R．Payá，Recent progress and open questions on the numerical index of Banach spaces（2006）

D．Sain，K．Paul，P．Bhunia，and S．Bag，On the numerical index of polyhedral Banach spaces（2019）

V．Kadets，M．Martín，J．Merí，and A．Pérez Spear operators between Banach spaces（2018）

The End

Thanks For Your Attention!

