The Schur and Radon-Nikodým properties in Lipschitz-free spaces

Ramón J. Aliaga

Universitat Politècnica de València raalva@upv.es

(joint work with C. Gartland, C. Petitjean & A. Procházka)

XXII Lluís Santaló School 17 Jul 2023

... **Schur property** if weakly convergent sequences in *X* are norm convergent

- ... **Schur property** if weakly convergent sequences in *X* are norm convergent
- ... **Radon-Nikodým property (RNP)** if the Radon-Nikodým theorem holds for *X*-valued vector measures

- ... **Schur property** if weakly convergent sequences in *X* are norm convergent
- ... Radon-Nikodým property (RNP) if $\overline{\text{conv}} \det C = C$ for every closed bounded convex $C \subset X$

- ... **Schur property** if weakly convergent sequences in *X* are norm convergent
- ... Radon-Nikodým property (RNP) if every Lipschitz map $[0, 1] \rightarrow X$ is differentiable a.e.

- ... **Schur property** if weakly convergent sequences in *X* are norm convergent
- ... **Radon-Nikodým property (RNP)** if every Lipschitz map $[0, 1] \rightarrow X$ is differentiable a.e.
- Both are hereditary and invariant under isomorphisms
- ℓ_1 has both properties, L_1 has neither
- In general, neither property implies the other one

- ... **Schur property** if weakly convergent sequences in *X* are norm convergent
- ... **Radon-Nikodým property (RNP)** if every Lipschitz map $[0, 1] \rightarrow X$ is differentiable a.e.

Question (implicit in Kalton 2004)

For which Lipschitz-free Banach spaces do they hold?

- ... **Schur property** if weakly convergent sequences in *X* are norm convergent
- ... **Radon-Nikodým property (RNP)** if every Lipschitz map $[0, 1] \rightarrow X$ is differentiable a.e.

Question (implicit in Kalton 2004)

For which Lipschitz-free Banach spaces do they hold?

Answer (Aliaga, Gartland, Petitjean, Procházka 2022)

Both properties are equivalent for Lipschitz-free spaces.

Setting

Let (M, d) be a complete metric space. Fix a base point $0 \in M$. The *Lipschitz constant* of $f : M \to \mathbb{R}$ is

$$\|f\|_L := \sup\left\{rac{|f(x)-f(y)|}{d(x,y)}: x
eq y\in M
ight\}$$

The Lipschitz space

$$\operatorname{Lip}_0(M) = \{f \colon M \to \mathbb{R} : \|f\|_L < \infty, f(0) = 0\}$$

is a Banach space with norm $\|\cdot\|_L$.

Lipschitz-free spaces

For $x \in M$, consider the evaluation operators

 $\delta(x): f \mapsto f(x)$

Then $\delta \colon M \to \operatorname{Lip}_0(M)^*$ is a (nonlinear) isometric embedding.

Lipschitz-free space (or Arens-Eells space)

$$\mathcal{F}(M) = \overline{\operatorname{span}}\,\delta(M) \subset \operatorname{Lip}_0(M)^*$$

Theorem (Arens, Eells 1956)

$$\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M)$$

The Schur and Radon-Nikodým properties in Lipschitz-free spaces

Universal property

Theorem (Kadets 1985; Pestov 1986; Weaver 1999)

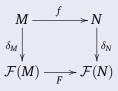
Let *M* be a metric space, *X* be a Banach space. Let $f: M \to X$ be a **Lipschitz mapping** such that f(0) = 0. Then there is a **linear operator** $F: \mathcal{F}(M) \to X$ with $F|_{\delta(M)} = f$ and $||F|| = ||f||_L$.

In other words, $\operatorname{Lip}_0(M, X) \equiv \mathcal{B}(\mathcal{F}(M), X)$.

Universal property

Theorem (Godefroy, Kalton 2003)

Let M, N be metric spaces. Let $f: M \to N$ be a **Lipschitz mapping** such that f(0) = 0. Then there is a **linear operator** $F: \mathcal{F}(M) \to \mathcal{F}(N)$ with $F|_{\delta(M)} = f$ and $||F|| = ||f||_L$.



Lipschitz-free subspaces

In particular:

- If *M* and *N* are bi-Lipschitz equivalent then $\mathcal{F}(M) \sim \mathcal{F}(N)$.
- If $N \subset M$ then $\mathcal{F}(N) \subset \mathcal{F}(M)$ isometrically.

Lipschitz-free subspaces

In particular:

- If *M* and *N* are bi-Lipschitz equivalent then $\mathcal{F}(M) \sim \mathcal{F}(N)$.
- If $N \subset M$ then $\mathcal{F}(N) \subset \mathcal{F}(M)$ isometrically.

Theorem (Aliaga, Pernecká 2020)

Let $S_i \subset M$ be closed subsets. Then

$$\bigcap_i \mathcal{F}(S_i) = \mathcal{F}\left(\bigcap_i S_i\right)$$

Examples

•
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1$$
:

$$T \colon \mathcal{F}(\mathbb{N}) \to \ell_1$$

 $\delta(n) \mapsto (1, \stackrel{n}{\dots}, 1, 0, 0, \ldots)$

Examples

•
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1$$
:
 $T: \mathcal{F}(\mathbb{N}) \rightarrow \ell_1$
 $\delta(n) \mapsto (1, \stackrel{n}{\dots}, 1, 0, 0, \dots)$
• $\mathcal{F}([0, 1]) \equiv L_1[0, 1]$:
 $T: \mathcal{F}([0, 1]) \rightarrow L_1[0, 1]$
 $\delta(x) \mapsto \chi_{[0, x]}$

• $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$ similarly

Schur and RNP in $\mathcal{F}(M)$: The compact case

The Schur and Radon-Nikodým properties in Lipschitz-free spaces

Locally flat functions

A function *f* is **locally flat** at *x* if $\lim_{r\to 0} ||f|_{B(x,r)}||_L = 0$. We denote $\lim_{t\to 0} (M) =$ locally flat functions in $\operatorname{Lip}_0(M)$.

Locally flat functions

A function *f* is **locally flat** at *x* if $\lim_{r\to 0} ||f|_{B(x,r)}||_L = 0$. We denote $\lim_{r\to 0} (M) =$ locally flat functions in $\operatorname{Lip}_0(M)$.

Examples:

•
$$M = [0,1]$$
: $f \in lip_0(M) \implies f'(x) = 0 \ \forall x \implies f \equiv 0$

Locally flat functions

A function *f* is **locally flat** at *x* if $\lim_{r\to 0} ||f|_{B(x,r)}||_L = 0$. We denote $\lim_{r\to 0} (M) =$ locally flat functions in $\operatorname{Lip}_0(M)$.

Examples:

•
$$M = [0, 1]$$
: $f \in \operatorname{lip}_0(M) \implies f'(x) = 0 \ \forall x \implies f \equiv 0$

• $M = \mathbb{N}$: every *f* is locally constant \Longrightarrow locally flat

Locally flat functions

A function *f* is **locally flat** at *x* if $\lim_{r\to 0} ||f|_{B(x,r)}||_L = 0$. We denote $\lim_{r\to 0} (M) =$ locally flat functions in $\operatorname{Lip}_0(M)$.

Examples:

- M = [0,1]: $f \in \operatorname{lip}_0(M) \implies f'(x) = 0 \ \forall x \implies f \equiv 0$
- $M = \mathbb{N}$: every *f* is locally constant \Longrightarrow locally flat
- $M \subset \mathbb{R}$ and $\lambda(M) = 0$:

Locally flat functions

A function *f* is **locally flat** at *x* if $\lim_{r\to 0} ||f|_{B(x,r)}||_L = 0$. We denote $\lim_{r\to 0} (M) =$ locally flat functions in $\operatorname{Lip}_0(M)$.

Examples:

•
$$M = [0, 1]$$
: $f \in \operatorname{lip}_0(M) \implies f'(x) = 0 \ \forall x \implies f \equiv 0$

• $M = \mathbb{N}$: every *f* is locally constant \Longrightarrow locally flat

•
$$M \subset \mathbb{R}$$
 and $\lambda(M) = 0$:

Fix $\varepsilon > 0$ and let $U \subset \mathbb{R}$ open, $U \supset M$, $\lambda(U) < \varepsilon$. Let $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \lambda([0,x] \setminus U) = \int_0^x (1 - \chi_U(t)) dt$$

Locally flat functions

A function *f* is **locally flat** at *x* if $\lim_{r\to 0} ||f|_{B(x,r)}||_L = 0$. We denote $\lim_{r\to 0} (M) =$ locally flat functions in $\operatorname{Lip}_0(M)$.

Examples:

•
$$M = [0, 1]$$
: $f \in \operatorname{lip}_0(M) \implies f'(x) = 0 \ \forall x \implies f \equiv 0$

• $M = \mathbb{N}$: every *f* is locally constant \Longrightarrow locally flat

•
$$M \subset \mathbb{R}$$
 and $\lambda(M) = 0$:

Fix $\varepsilon > 0$ and let $U \subset \mathbb{R}$ open, $U \supset M$, $\lambda(U) < \varepsilon$. Let $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \lambda([0,x] \setminus U) = \int_0^x (1 - \chi_U(t)) dt$$

Then *f* is locally constant on $M \Longrightarrow f|_M \in \text{lip}_0(M)$. Moreover $||f||_L = 1$ and $|f(y) - f(x)| > |y - x| - \varepsilon$.

Locally flat functions

A function *f* is **locally flat** at *x* if $\lim_{r\to 0} ||f|_{B(x,r)}||_L = 0$. We denote $\lim_{r\to 0} (M) =$ locally flat functions in $\operatorname{Lip}_0(M)$.

Examples:

•
$$M = [0,1]$$
: $f \in \operatorname{lip}_0(M) \implies f'(x) = 0 \ \forall x \implies f \equiv 0$

• $M = \mathbb{N}$: every *f* is locally constant \Longrightarrow locally flat

•
$$M \subset \mathbb{R}$$
 and $\lambda(M) = 0$:

Uniform separation

We say that $\lim_{n \to \infty} (M)$ **SPU** (separates points of M uniformly) if

$$orall x,y\in M, arepsilon>0$$
 there is $f\in ext{lip}_0(M)$ such that $\|f\|_L\leq 1$ and $f(x)-f(y)>d(x,y)-arepsilon$

Uniform separation and duality

Theorem (Weaver 1996)

If *K* is compact and $\lim_{k \to 0} (K)$ SPU then $\lim_{k \to 0} (K)^* = \mathcal{F}(K)$.

Uniform separation and duality

Theorem (Weaver 1996)

If *K* is compact and $\lim_{k \to 0} (K)$ SPU then $\lim_{k \to 0} (K)^* = \mathcal{F}(K)$.

Examples:

- *K* has a snowflake metric (Johnson 1970)
- *K* is countable (Dalet 2015; Weaver 2018)
- *K* is ultrametric (Dalet 2015)
- $K \subset$ a \mathbb{R} -tree, $\lambda(K) = 0$ (Aliaga, Petitjean, Procházka 2021)

•
$$\mathcal{H}^1(K) = 0$$

The general case

Schur & RNP: Compact case

Ramón J. Aliaga

The Schur and Radon-Nikodým properties in Lipschitz-free spaces

Schur & RNP: Compact case

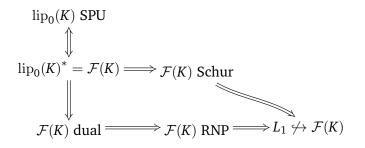
Separable dual spaces have the RNP.

Schur & RNP: Compact case

Theorem (Kalton 2004; Petitjean 2017)

If $\operatorname{lip}_0(M)$ is 1-norming then $\mathcal{F}(M)$ has the Schur property.

Schur & RNP: Compact case



 L_1 is neither Schur nor RNP.

The Schur and Radon-Nikodým properties in Lipschitz-free spaces

Purely 1-unrectifiable spaces

A **curve fragment** is a bi-Lipschitz copy of a compact $K \subset \mathbb{R}$ with positive measure. A metric space *M* is **purely 1-unrectifiable** if it contains no

curve fragments.

Purely 1-unrectifiable spaces

A **curve fragment** is a bi-Lipschitz copy of a compact $K \subset \mathbb{R}$ with positive measure.

A metric space *M* is **purely 1-unrectifiable** if it contains no curve fragments.

Theorem (Godard 2010)

Let $M \subset \mathbb{R}$ closed and infinite.

- If $\lambda(M) = 0$ then $\mathcal{F}(M) \equiv \ell_1$.
- If $\lambda(M) > 0$ then $\mathcal{F}(M) \sim L_1$.

Purely 1-unrectifiable spaces

A **curve fragment** is a bi-Lipschitz copy of a compact $K \subset \mathbb{R}$ with positive measure.

A metric space *M* is **purely 1-unrectifiable** if it contains no curve fragments.

Theorem (Godard 2010)

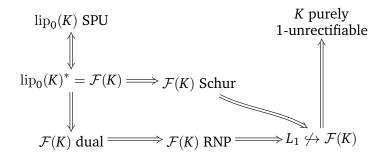
Let $M \subset \mathbb{R}$ closed and infinite.

- If $\lambda(M) = 0$ then $\mathcal{F}(M) \equiv \ell_1$.
- If $\lambda(M) > 0$ then $\mathcal{F}(M) \sim L_1$.

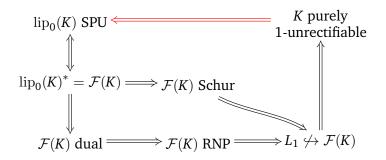
Corollary

If *M* contains a curve fragment, then $L_1 \hookrightarrow \mathcal{F}(M)$.

Schur & RNP: Compact case



Schur & RNP: Compact case



Theorem (Aliaga, Gartland, Petitjean, Procházka 2022)

If *K* is compact and purely 1-unrectifiable then $\lim_{k \to 0} (K)$ SPU.

Argument using Bate's results

Let *K* be compact and purely 1-unrectifiable, and $f \in B_{\text{Lip}_0(K)}$.

Lemma (Bate 2020)

For any $\varepsilon > 0$ there are $g \in B_{\text{Lip}_0(K)}$ and $\delta > 0$ such that:

1
$$||f - g||_{\infty} \le \varepsilon$$

2 $\frac{|g(x) - g(y)|}{d(x, y)} \le \frac{|f(x) - f(y)|}{d(x, y)} + \varepsilon$ for all $x \ne y \in K$
3 $\frac{|g(x) - g(y)|}{d(x, y)} \le \varepsilon$ for all $x \ne y \in K$ with $d(x, y) \le \delta$

Argument using Bate's results

Let *K* be compact and purely 1-unrectifiable, and $f \in B_{\text{Lip}_0(K)}$.

Lemma (Bate 2020)

For any $\varepsilon > 0$ there are $g \in B_{\text{Lip}_0(K)}$ and $\delta > 0$ such that:

1
$$\|f - g\|_{\infty} \le \varepsilon$$

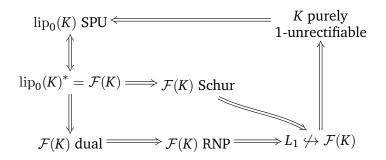
2 $\frac{|g(x) - g(y)|}{d(x, y)} \le \frac{|f(x) - f(y)|}{d(x, y)} + \varepsilon$ for all $x \ne y \in K$
3 $\frac{|g(x) - g(y)|}{d(x, y)} \le \varepsilon$ for all $x \ne y \in K$ with $d(x, y) \le \delta$

Theorem

For any
$$\varepsilon > 0$$
 there is $g \in B_{lip_0(K)}$ such that $||f - g||_{\infty} \le \varepsilon$.

Proof: Fix $\sum \varepsilon_n \leq \varepsilon$ and apply Bate's lemma iteratively to get a sequence (g_n) where $||g_n - g_{n-1}|| \leq \varepsilon_n$. Then $g_n \xrightarrow{\|\cdot\|_{\infty}} g \in \lim_{t \to 0} (K)$.

Schur & RNP: Compact case



Theorem (Aliaga, Gartland, Petitjean, Procházka 2022)

If *K* is compact and purely 1-unrectifiable then $\lim_{k \to 0} (K)$ SPU.

Schur & RNP: Compact case

Theorem (Aliaga, Gartland, Petitjean, Procházka 2022)

For a compact metric space *K*, TFAE:

- *K* is purely 1-unrectifiable
- $lip_0(K)$ separates points of K uniformly
- $\operatorname{lip}_0(K)^* = \mathcal{F}(K)$
- $\mathcal{F}(K)$ is a dual Banach space
- $\mathcal{F}(K)$ has the Schur property
- $\mathcal{F}(K)$ has the Radon-Nikodým property
- $\mathcal{F}(K)$ does not contain L_1

Schur and RNP in $\mathcal{F}(M)$: The general case

The Schur and Radon-Nikodým properties in Lipschitz-free spaces

Kalton's lemma

Let *M* be any complete metric space. For $E \subset M$, use the notation

$$[E]_r = \bigcup_{e \in E} B(e, r)$$

Kalton's lemma

Let *M* be any complete metric space. For $E \subset M$, use the notation

$$[E]_r = \bigcup_{e \in E} B(e, r)$$

Lemma (Kalton 2004)

If $W = (w_n) \subset \mathcal{F}(M)$ is a weakly null sequence, then

• for every $\varepsilon, r > 0$ there is a finite $E \subset M$ such that

$$W \subset \mathcal{F}([E]_r) + \varepsilon B_{\mathcal{F}(M)}$$

Kalton's lemma

Let *M* be any complete metric space. For $E \subset M$, use the notation

$$[E]_r = \bigcup_{e \in E} B(e, r)$$

Lemma (Kalton 2004)

If $W = (w_n) \subset \mathcal{F}(M)$ is a weakly null sequence, then

• for every $\varepsilon, r > 0$ there is a finite $E \subset M$ such that

 $W \subset \mathcal{F}([E]_r) + \varepsilon B_{\mathcal{F}(M)}$

i.e. there is a sequence $(v_n) \subset \mathcal{F}([E]_r)$ s.t. $||w_n - v_n|| \le \varepsilon$

Proposition (Aliaga, Noûs, Petitjean, Procházka 2021)

For a subset $W \subset \mathcal{F}(M)$, TFAE:

• For every $\varepsilon, r > 0$ there is a finite $E \subset M$ such that

 $W \subset \mathcal{F}([E]_r) + \varepsilon B_{\mathcal{F}(M)}$

• For every $\varepsilon > 0$ there is a compact $K \subset M$ such that

 $W \subset \mathcal{F}(K) + \varepsilon B_{\mathcal{F}(M)}$

Proposition (Aliaga, Noûs, Petitjean, Procházka 2021)

For a subset $W \subset \mathcal{F}(M)$, TFAE:

• For every $\varepsilon, r > 0$ there is a finite $E \subset M$ such that

 $W \subset \mathcal{F}([E]_r) + \varepsilon B_{\mathcal{F}(M)}$

• For every $\varepsilon > 0$ there is a compact $K \subset M$ such that

$$W \subset \mathcal{F}(K) + \varepsilon B_{\mathcal{F}(M)}$$

Moreover there is a linear (non-continuous) map $T : W \to \mathcal{F}(K)$ such that $||w - Tw|| \le \varepsilon$ for $w \in W$. (In fact *T* is a uniform limit of operators on *W*.)

Sketch of proof:

Let $r_n \searrow 0$ and iteratively approximate W in

- $\mathcal{F}([E_1]_{r_1})$
- $\mathcal{F}([E_1]_{r_1}) \cap \mathcal{F}([E_2]_{r_2})$
- $\mathcal{F}([E_1]_{r_1}) \cap \mathcal{F}([E_2]_{r_2}) \cap \mathcal{F}([E_3]_{r_3})$
- . . .

Sketch of proof:

Let $r_n \searrow 0$ and iteratively approximate W in

• $\mathcal{F}([E_1]_{r_1})$ • $\mathcal{F}([E_1]_{r_1}) \cap \mathcal{F}([E_2]_{r_2})$ • $\mathcal{F}([E_1]_{r_1}) \cap \mathcal{F}([E_2]_{r_2}) \cap \mathcal{F}([E_3]_{r_3})$ • ...

The approximations converge to something contained in

$$\bigcap_{n=1}^{\infty} \mathcal{F}([E_n]_{r_n}) = \mathcal{F}\left(\bigcap_{n=1}^{\infty} [E_n]_{r_n}\right)$$

Sketch of proof:

Let $r_n \searrow 0$ and iteratively approximate W in

• $\mathcal{F}([E_1]_{r_1})$ • $\mathcal{F}([E_1]_{r_1}) \cap \mathcal{F}([E_2]_{r_2})$ • $\mathcal{F}([E_1]_{r_1}) \cap \mathcal{F}([E_2]_{r_2}) \cap \mathcal{F}([E_3]_{r_3})$ • ...

The approximations converge to something contained in

$$\bigcap_{n=1}^{\infty} \mathcal{F}([E_n]_{r_n}) = \underbrace{\mathcal{F}\left(\bigcap_{n=1}^{\infty} [E_n]_{r_n}\right)}_{\mathcal{F}(K)}$$

Compact determination

Theorem (Aliaga, Noûs, Petitjean, Procházka 2021)

 $\mathcal{F}(M)$ is Schur iff $\mathcal{F}(K)$ is Schur for every compact $K \subset M$.

We say that the Schur property is **compactly determined**.

Compact determination

Theorem (Aliaga, Noûs, Petitjean, Procházka 2021)

 $\mathcal{F}(M)$ is Schur iff $\mathcal{F}(K)$ is Schur for every compact $K \subset M$.

We say that the Schur property is compactly determined.

Sketch of proof (⇐):

Let $w_n \xrightarrow{w} 0$ in $\mathcal{F}(M)$. Find $(v_n) \subset \mathcal{F}(K)$ with $v_n \approx w_n$. Using the linearity of $w_n \mapsto v_n$, we have $v_n \xrightarrow{w} 0$. By assumption we get $v_n \to 0$. Thus $w_n \to 0$ as well.

Compact determination

Theorem (Aliaga, Noûs, Petitjean, Procházka 2021)

 $\mathcal{F}(M)$ is Schur iff $\mathcal{F}(K)$ is Schur for every compact $K \subset M$.

Other compactly determined properties, with similar proof:

- weak sequential completeness
- the approximation property (AP)
- the Dunford-Pettis property

...and with a probabilistic version of the proof:

• the Radon-Nikodým property

Theorem (Aliaga, Gartland, Petitjean, Procházka 2022)

 $\mathcal{F}(M)$ is RNP iff $\mathcal{F}(K)$ is RNP for every compact $K \subset M$.

Probabilistic Kalton's lemma

Fix a probability measure space (Ω, Σ, μ) .

A Banach space *X* has the RNP iff every uniformly integrable *X*-valued martingale converges in $L_1(X) = L_1(\Omega, \Sigma, \mu; X)$.

Probabilistic Kalton's lemma

Fix a probability measure space (Ω, Σ, μ) .

A Banach space *X* has the RNP iff every uniformly integrable *X*-valued martingale converges in $L_1(X) = L_1(\Omega, \Sigma, \mu; X)$.

Lemma

Every martingale $W = (w_n) \subset L_1(\mathcal{F}(M))$ satisfies

• for every $\varepsilon, r > 0$ there is a finite $E \subset M$ such that

 $W \subset L_1(\mathcal{F}([E]_r)) + \varepsilon B_{L_1(\mathcal{F}(M))}$

Mean tightness

Proposition

For a subset $W \subset L_1(\mathcal{F}(M))$, TFAE:

• For every $\varepsilon, r > 0$ there is a finite $E \subset M$ such that

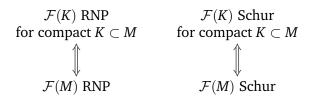
 $W \subset L_1(\mathcal{F}([E]_r)) + \varepsilon B_{L_1(\mathcal{F}(M))}$

• For every $\varepsilon > 0$ there is a compact $K \subset M$ such that

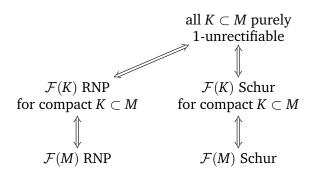
 $W \subset L_1(\mathcal{F}(K)) + \varepsilon B_{L_1(\mathcal{F}(M))}$

Moreover there is a linear map $T: W \to L_1(\mathcal{F}(K))$ such that $\|w - Tw\|_{L_1} \leq \varepsilon$ for $w \in W$.

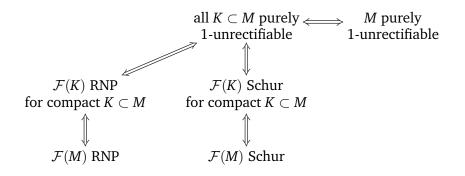
The general case



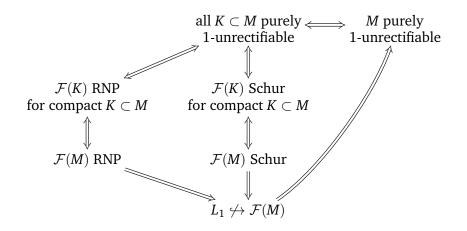
The general case



The general case



The general case



The general case: summary

Theorem (Aliaga, Gartland, Petitjean, Procházka 2022)

For a complete metric space *M*, TFAE:

- *M* is purely 1-unrectifiable
- $\mathcal{F}(M)$ does not contain L_1
- $\mathcal{F}(M)$ has the Schur property
- $\mathcal{F}(M)$ has the Radon-Nikodým property

The general case: summary

Theorem (Aliaga, Gartland, Petitjean, Procházka 2022)

For a complete metric space *M*, TFAE:

- *M* is purely 1-unrectifiable
- $\mathcal{F}(M)$ does not contain L_1
- $\mathcal{F}(M)$ has the Schur property
- $\mathcal{F}(M)$ has the Radon-Nikodým property
- $\mathcal{F}(M)$ has the Krein-Milman property

X has the **Krein-Milman property (KMP)** if $\overline{\text{conv}} \operatorname{ext} C = C$ for every closed bounded convex $C \subset X$.

$$\mathsf{RNP} \implies \mathsf{KMP} \implies L_1 \not\hookrightarrow X$$

The compact case

The general case

Duality in the general case

What about duality for general *M*?

The compact case

The general case

Duality in the general case

What about duality for general *M*?

The compact case

The general case

Duality in the general case

What about duality for general *M*?

NO. Counterexample:

(García-Lirola, Petitjean, Procházka, Rueda Zoca 2018)

The compact case

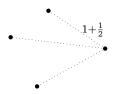
The general case

Duality in the general case

What about duality for general *M*?

NO. Counterexample:

(García-Lirola, Petitjean, Procházka, Rueda Zoca 2018)



The Schur and Radon-Nikodým properties in Lipschitz-free spaces

The compact case

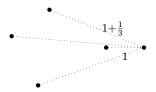
The general case

Duality in the general case

What about duality for general *M*?

NO. Counterexample:

(García-Lirola, Petitjean, Procházka, Rueda Zoca 2018)



The Schur and Radon-Nikodým properties in Lipschitz-free spaces

The compact case

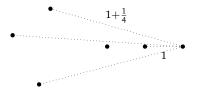
The general case

Duality in the general case

What about duality for general *M*?

NO. Counterexample:

(García-Lirola, Petitjean, Procházka, Rueda Zoca 2018)



The compact case

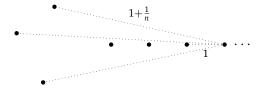
The general case

Duality in the general case

What about duality for general *M*?

NO. Counterexample:

(García-Lirola, Petitjean, Procházka, Rueda Zoca 2018)



The compact case

The general case

Duality in the general case

What about duality for general *M*?

The compact case

The general case

Duality in the general case

What about duality for general *M*?

Question $\xrightarrow{???}$ $\mathcal{F}(M)$ dual $\mathcal{F}(M)$ RNP

Separable M: YES.

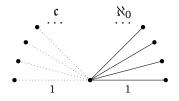
The compact case

The general case

Duality in the general case

What about duality for general *M*?

Separable *M*: YES. Nonseparable *M*: NO. Counterexample: $\mathcal{F}(M) = C([0, 1])^*$ (Aliaga, Procházka)



Open question

Open question

Does Schur/RNP imply the AP for Lipschitz-free spaces?

Ramón J. Aliaga

The Schur and Radon-Nikodým properties in Lipschitz-free spaces

Open question

Open question

Does Schur/RNP imply the AP for Lipschitz-free spaces?

Equivalently:

Open question (Godefroy)

If *K* compact and $\lim_{k \to 0} (K)$ SPU, does $\mathcal{F}(K)$ have the (M)AP?

Thank you for your attention!

References:

- R. J. Aliaga, C. Gartland, C. Petitjean and A. Procházka, "Purely 1-unrectifiable metric spaces and locally flat Lipschitz functions", *Trans. Amer. Math. Soc.* 375, pp. 3529–3567, 2022
- R. J. Aliaga, C. Noûs, C. Petitjean and A. Procházka, "Compact reduction in Lipschitz-free spaces", *Studia Math.* 260, pp. 341–359, 2021
- D. Bate, "Purely unrectifiable metric spaces and perturbations of Lipschitz functions", *Acta Math.* 224, pp. 1–65, 2020
- N. J. Kalton, "Spaces of Lipschitz and Hölder functions and their applications", Collect. Math. 55, pp. 171–217, 2004