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We analyze question 18 of J. Lindenstrauss in [5]. We prove that a Banach
space E with a norming subspace F ⊂ E∗ has an equivalent σ(E,F )-lower
semicontinuous LUR norm if, and only if, there is a sequence {An : n =
1, 2, · · · } of subsets of E such that, given any x ∈ E and ϵ > 0, there is
a σ(E,F )-open half-space H and p ∈ N such that x ∈ H ∩ Ap and the
slice H ∩ Ap can be covered with countable many sets of diameter less than
ϵ. Thus E has an equivalent σ(E,F )-lower semicontinuous LUR norm if,
and only if, it has another one with separable denting faces,[9, 10] This
result completely solves four problems asked in [7, Question 6.33,
p.128] extending Troyanski’s fundamental results (see Chapter IV
in [1]), and others ones in [3, 6]. Moreover, LUR renormings are
possible at points of separable faces wich could be glued as a σ-
slicely isolated family of faces [7], of the unit sphere of E. Among
new examples covered by this results are Banach spaces C(K), where K is a
Rosenthal compact spaceK ⊂ RΓ i.e., a compact space of Baire one functions
on a Polish space Γ, with at most countably many discontinuity points for
every s ∈ K, which solves three problems asked in [7, Question 6.23,
p.125]. Previously, it was only known for K being separable too, see [4]
where the σ-fragmentability of C(K) was already proved for non separableK,
and a conjecture for the pointwise lower semicontinuous and LUR renorming
presented here was posed, details will appear in [8].

For strictly convex renormings we solve a recent question of R.
Smith [11] giving a final answer to Lindenstauss question 18 in
[5], see [2].
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